【摘要】目錄上頁下頁返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階非標(biāo)準(zhǔn)類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個標(biāo)準(zhǔn)類型
2024-10-19 17:11
【摘要】常微分方程期終考試試卷(1)一、填空題(30%)1、方程有只含的積分因子的充要條件是()。有只含的積分因子的充要條件是______________。2、_____________稱為黎卡提方程,它有積分因子______________。3、__________________稱為伯努利方程,它有積分因子_________。4、若為階齊線性方程的個解,則它
2025-03-25 01:12
【摘要】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19
【摘要】本章重點講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級數(shù)解法。對于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
【摘要】常微分方程課程簡介常微分方程是研究自然科學(xué)和社會科學(xué)中的事物、物體和現(xiàn)象運動、演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理、化學(xué)、生物、工程、航空航天、醫(yī)學(xué)、經(jīng)濟和金融領(lǐng)域中的許多原理和規(guī)律都可以描述成適當(dāng)?shù)某N⒎址匠?,如牛頓運動定律、萬有引力定律、機械能守恒定律,能量守恒定律、人口發(fā)展規(guī)律、生態(tài)種群競爭、疾病傳染、遺傳基因變異、股票的漲伏趨勢、利
2025-08-01 13:03
【摘要】第二章習(xí)題答案第二章?第三章?第四章?第五章?第六章?q1顯示答案a1隱藏答案q2顯示答案a2第二章?第三章?第四章?第五章?第六章?q1顯示答案a1隱藏答案q2顯示答案a2隱藏答案q3顯示
2025-06-19 20:50
【摘要】2021/6/17常微分方程§微分方程的降階和冪級數(shù)解法2021/6/17常微分方程一、可降階的一些方程類型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導(dǎo)數(shù)的方程是)(0),,,,()()1()(??
2025-05-11 05:30
【摘要】目錄上頁下頁返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個未知函數(shù)的一階或高階方程,但在許多實際的問題和一些理論問題中,往往要涉及到若干個未知函數(shù)以及它們導(dǎo)數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
2025-01-20 04:56
【摘要】1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時,y=0原方程的通解為y=cex,x=0y=1時c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-18 13:01
【摘要】《數(shù)學(xué)系(常微分方程)》教學(xué)大綱 學(xué)時:51學(xué)時 學(xué)分:3 適用專業(yè):數(shù)學(xué)、系統(tǒng)科學(xué)與工程及控制理論與應(yīng)用等專業(yè)。大綱執(zhí)筆人:魯世平 大綱審定人:劉樹德 一、說明(500字左右)1、課程的性質(zhì)、地位和任務(wù)本課程是高等師范院校數(shù)學(xué)專業(yè)和綜合性大學(xué)數(shù)學(xué)專業(yè)、系統(tǒng)科學(xué)與工程專業(yè)、控制理論與應(yīng)用等專業(yè)的一門重要基礎(chǔ)課程,它的任務(wù)是使學(xué)生獲得微
2025-08-23 02:02
【摘要】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當(dāng)時,得到,兩邊積分即可得到結(jié)果;當(dāng)時,則也是方程的解。、解:當(dāng)時,有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當(dāng)時,可有,兩邊積分可得結(jié)果;當(dāng)時,為原方程的解,當(dāng)時,為原方程的解。、解:當(dāng)時,有兩邊積分
2025-06-25 01:32
【摘要】四川大學(xué)教案【首頁】課程名稱常微分方程授課專業(yè)數(shù)學(xué)學(xué)院年級大二課程編號20122940課程類型必修課校級公共課();基礎(chǔ)或?qū)I(yè)基礎(chǔ)課(√);專業(yè)課()選修課限選課();任選課()授課方式課堂講授(√);實踐課()考核方式考試(√);考查()課程教學(xué)總學(xué)時數(shù)68學(xué)分?jǐn)?shù)4學(xué)時分配
2025-05-12 01:35
【摘要】常微分方程在數(shù)學(xué)建模中的應(yīng)用這里介紹幾個典型的用微分方程建立數(shù)學(xué)模型的例子.一、人口預(yù)測模型由于資源的有限性,當(dāng)今世界各國都注意有計劃地控制人口的增長,為了得到人口預(yù)測模型,必須首先搞清影響人口增長的因素,而影響人口增長的因素很多,如人口的自然出生率、人口的自然死亡率、人口的遷移、自然災(zāi)害、戰(zhàn)爭等諸多因素,如果一開始就把所有因素都考慮進去,,先把問題簡化,建立比較粗糙的模
2025-09-25 17:06
【摘要】用分離變量法解常微分方程重慶師范大學(xué)涉外商貿(mào)學(xué)院數(shù)學(xué)與數(shù)學(xué)應(yīng)用(師范)2012級3班鄧海飛指導(dǎo)教師申治華摘要變量可分離的方程是常微分中一個基本的類型,分離變量法是解決微分方程的初等解法。本文研究了變量分離方程的多種類型和解法,通過適當(dāng)?shù)淖兞刻鎿Q把方程化為變量分離方程,例如齊次方程、線性方程、Riccati方程。并且通過相應(yīng)的例題具體演繹分離變量法解微分方程。最后本文
2025-08-05 01:06
【摘要】例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出微分方程:凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫
2024-12-08 03:00