【摘要】2021/6/17常微分方程§微分方程的降階和冪級(jí)數(shù)解法2021/6/17常微分方程一、可降階的一些方程類型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導(dǎo)數(shù)的方程是)(0),,,,()()1()(??
2025-05-11 05:30
【摘要】常微分方程的初等解法1.常微分方程的基本概況:自變量﹑未知函數(shù)及函數(shù)的導(dǎo)數(shù)(或微分)組成的關(guān)系式,得到的便是微分方程,通過求解微分方程求出未知函數(shù),自變量只有一個(gè)的微分方程稱為常微分方程。:常微分方程是研究自然科學(xué)和社會(huì)科學(xué)中的事物、物體和現(xiàn)象運(yùn)動(dòng)﹑演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理﹑化學(xué)﹑生物﹑工程﹑航空﹑航天﹑醫(yī)學(xué)﹑經(jīng)濟(jì)和金融領(lǐng)域中的許多原理和規(guī)律都可以
2025-06-18 13:01
【摘要】微分方程的經(jīng)濟(jì)應(yīng)用,如果要使該商品的銷售收入在價(jià)格變化的情況下保持不變,則銷售量對于價(jià)格的函數(shù)關(guān)系滿足什么樣的微分方程?在這種情況下,該商品的需求量相對價(jià)格的彈性是多少?解 由題意得銷售收入(常數(shù)),在上式兩端對求導(dǎo),得到所滿足的微分方程.即且,需求量(1)求商品對價(jià)格的需求函數(shù);(2)當(dāng)時(shí),需求是否趨于穩(wěn)定.
2025-09-25 15:08
【摘要】第一節(jié)微分方程的概念第二節(jié)常見的一階微分方程第三節(jié)高階微分方程第四節(jié)歐拉方程第五節(jié)微分方程的應(yīng)用第六節(jié)差分方程簡介微分方程簡介?方程:線性方程、二次方程、高次方程、指數(shù)方程、對數(shù)方程、三角方程和方程組等。?用微積分描述運(yùn)動(dòng),便得到微分方程。例如描述物質(zhì)在一定條件下的運(yùn)動(dòng)變化規(guī)律;
2025-01-19 12:01
【摘要】Matlab解常微分方程的初值問題以下類容來源于:精通matlab-張易華;清華出版社;1999年。1:問題常微分方程的初值問題的標(biāo)準(zhǔn)數(shù)學(xué)表述為:;我們要求解的任何高階常微分方程都可以用替換法化為上式所示的一階形式,其中y為向量,yo為初始值。2:Matlab中解決以上問題的步驟(1):化方程組為標(biāo)準(zhǔn)形式。例如:y’’’-3y’’-y’y
2025-01-14 21:16
【摘要】常微分方程的高精度求解方法安徽大學(xué)江淮學(xué)院07計(jì)算機(jī)(1)班安徽大學(xué)江淮學(xué)院本科畢業(yè)論文(設(shè)計(jì))題目:常微分方程求解的高階方法學(xué)生姓名:圣近學(xué)號(hào):JB074219院(系):計(jì)算機(jī)科學(xué)與技術(shù)專業(yè):計(jì)算
2025-06-03 12:01
【摘要】第三章存在和唯一性定理一.[內(nèi)容提要]本章主要介紹解的存在和唯一性定理、,學(xué)過這一定理之后,對于微分方程的通解概念,才由形式上的理解轉(zhuǎn)為實(shí)質(zhì)上的理解;另外在求近似解之前,都必須從理論上做解的存在唯一性判定.關(guān)于解的延伸定理,它把解的存在唯一性定理所得到的、具有局部性的結(jié)果,,都是很有意義的.二.[關(guān)鍵詞]存在和唯一性,解的延伸,畢卡逐次逼近法三.[目的和要求]
2025-06-29 11:50
【摘要】9《常微分方程》選擇題及答案選擇題1、下列方程中為常微分方程的是()(A)(B)(C)(D)(c為常數(shù))2、下列微分方程是線性
2025-03-25 01:12
【摘要】習(xí)題2-41.求解下列微分方程:(1)yxxyy????22;解:令uxy?,則原方程化為uuudxdux????212,即xdxduuu???122,積分得:cxuuu??????ln1ln2111ln2還原變量并化簡得:3)()(yxcxy???(2)
2025-01-10 04:03
【摘要】年級(jí)、專業(yè)姓名學(xué)號(hào)名單序號(hào)實(shí)驗(yàn)時(shí)間2013年3月日使用設(shè)備、軟件PC,MATLAB注:實(shí)驗(yàn)報(bào)告的最后一部分是實(shí)驗(yàn)小結(jié)與收獲實(shí)驗(yàn)一常微分方程1.分別用Euler法和ode45解下列常微分方程并與解析解比較:(1)編寫Euler法的
2025-01-18 22:28
【摘要】常微分方程初值問題的數(shù)值解法第6章引言在實(shí)際問題中,常需要求解微分方程(如發(fā)電機(jī)轉(zhuǎn)子運(yùn)動(dòng)方程)。只有簡單的和典型的微分方程可以求出解析解,而在實(shí)際問題中的微分方程往往無法求出解析解。常微分方程:????????0)(),(yaybxayxfy-(1)??????????
2025-05-15 07:53
【摘要】第14章常微分方程的MATLAB求解編者Outline?微分方程的基本概念?幾種常用微分方程類型?高階線性微分方程?一階微分方程初值問題的數(shù)值解?一階微分方程組和高階微分方程的數(shù)值解?邊值問題的數(shù)值解微分方程的基本概念微分方程:一般的,凡表示未知函數(shù)、未知函數(shù)
2025-07-20 07:53
【摘要】常微分方程期終考試試卷(1)一、填空題(30%)1、方程有只含的積分因子的充要條件是()。有只含的積分因子的充要條件是______________。2、_____________稱為黎卡提方程,它有積分因子______________。3、__________________稱為伯努利方程,它有積分因子_________。4、若為階齊線性方程的個(gè)解,則它
【摘要】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19
【摘要】本章重點(diǎn)講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級(jí)數(shù)解法。對于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
2025-10-10 17:11