【總結】立體幾何綜合訓練(45)二面角二面角問題因其需要充分運用立體幾何第一章的線線、線面、面面關系,具有綜合性強,靈活性大的特點,因此,一直成為高考、會考的熱點。求解二面角問題一般可分為直接法和間接法二大類。一、直接法直接法就是根據已知條件,首先作出二面角的平面角,再求平面角大小的方法。求作二面角平面角的方法主要有:lab①利用定義即在二面角-l-的
2025-09-25 17:11
【總結】 知識點:二面角的求法一、思想方法求二面角的大小,是立體幾何計算與運用中的一個重點和難點.直接法的核心是作(或找)出二面角的平面角,間接法可利用投影、異面直線、空間向量等。常用的方法有以下幾種:方法一(定義法)即從二面角棱上一點在兩個面內分別引棱的垂線如圖1。方法二(三垂線法)在二面角的一
2025-03-25 06:41
【總結】1.如圖,四棱錐中,底面為矩形,底面,,點M在側棱上,=60°(I)證明:M在側棱的中點(II)求二面角的大小。2.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC,PC的中點.(Ⅰ)證明:AE⊥PD;(Ⅱ)若H為PD上的動點,EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.E
2025-03-25 06:42
【總結】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2025-10-31 08:07
【總結】高二數學課件:制作:余干二中章華鋒二面角和面面垂直二面角和面面垂直教學目標:掌握判定定理,并會應用培養(yǎng)空間想象能力,推理能力教學難點:判定定理及其綜合應用1、問題:一條直線可以把一個平面分成多少部分?每一部分都叫做半平面2部分2、觀察一下從一條直線出發(fā)的兩個半平面所組成的的圖形叫二面角.
2025-10-31 01:26
【總結】第一篇:線面垂直面面垂直及二面角專題練習 線面垂直專題練習 一、定理填空: 如果一條直線和,線面垂直判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,:如果兩條平行線中的一條于一個平面...
2025-10-31 12:06
【總結】平面法向量在立體幾何中的應用——利用法向量求二面角(一)平面的法向量的定義:n如果n??,那么向量n叫做平面?的法向量?1、利用平面法向量求直線與平面所成的角:直線與平面所成的角等于平面的法向量所在的直線與已知直線的夾角的余角。(二
2025-11-15 14:09
【總結】立體幾何專題之二面角問題北京大學光華管理學院何洋立體幾何高考情況簡述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問題高考情況簡述?除2022年北京
2025-07-20 07:01
【總結】??????復習回顧"角"是怎樣定義的?從一點出發(fā)的兩條射線所組成的圖形叫做角?;?一條射線繞其端點旋轉而成的圖形叫做角。,"異面直線所成的角"是怎樣定義的?直線a、b是異面直線,經過空間任意一點O,分別引直線a'//a,b'//b,我們把相
2025-08-05 18:18
【總結】空間兩個平面羅移豐??????二面角1打開的書一個平面內的一條直線把這個平面分成兩個部分,其中的每一部分都叫做半平面。一條直線上的一個點把這條直線分成兩個部分,其中的每一部分都叫做射線。2l??AB?
2025-11-01 08:38
【總結】直線與平面所成的角與二面角(二)-——二面角與平面和平面的垂直關系1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl
2025-08-04 10:03
【總結】平面與平面垂直的判定與性質(習題課)例1:已知二面角,其大小為90°,,線段AB=2a,AB與成45°的角,與成30°的角,過點A、B作的垂線A
2025-10-31 09:23
【總結】08:29二面角08:29一、二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。1、半平面——αl二面角08:29從空間一直線出發(fā)的兩個半2、二面角的定義3、二面角的平面角角的平面角
【總結】退出平面與平面垂直的判定定理和性質定理(一)判定定理性質定理課后思考應用作業(yè)小結引入建筑工人砌墻時,常用一端系有鉛錘的線來檢查所砌的墻面是否和地面垂直,如果系有鉛錘的線和墻面緊貼,問題引入引入那么所砌的墻面與地面垂直。大家知道其中的理論根據嗎?退出平面與平面垂直
2025-10-31 08:11
【總結】數列百通通項公式求法(一)轉化為等差與等比1、已知數列滿足,(2≤≤8),則它的通項公式什么,并且,則它的通項公式是什么,并且,則它的通項公式是
2025-03-25 02:51