【總結(jié)】高中立體幾何中二面角的平面角的作法一、二面角的平面角的定義如圖(1),α、β是由l出發(fā)的兩個平面,O是l上任意一點OC∈α,且OC⊥l;CD∈β,且OD⊥l。這就是二面角的平面角的環(huán)境背景,即∠COD是二面角α—l—β的平面角,從中不難得到下列特征: ?、瘛⑦^棱上任意一點,其平面角是唯一的;Ⅱ、其平面角所在平面與其兩個半平面均垂直;另外,如果在O
2025-06-07 23:17
【總結(jié)】-9-2020-2020學(xué)年度下學(xué)期高中學(xué)生學(xué)科素質(zhì)訓(xùn)練高二數(shù)學(xué)測試題—平面與平面的位置關(guān)系(3)一、選擇題:(本大題共10小題,每小題5分,共50分)1.過正方形ABCD的頂點A作線段AP⊥平面ABCD,且AP=AB,則平面ABP與平面CDP所成的二面角的度數(shù)是()
2024-11-12 18:59
【總結(jié)】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2024-11-09 08:07
【總結(jié)】二面角(2)復(fù)習(xí)提問:lP??ABABP??ABO??lP①、定義法②、三垂線(逆)定理法③、垂面法CQ∠APBQCPA,?l作二面角的平面角的常用方法??AB
2025-08-01 17:44
【總結(jié)】二面角與平面和平面的垂直關(guān)系(一)1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl按此繼續(xù)l??AB??二
2025-01-12 23:48
【總結(jié)】平面直線的方向向量是如何定義的?唯一嗎?如何表示空間直線的方向?空間直線的方向向量和平面的法向量對于空間任意一條直線l,我們把與直線平行的非零向量d叫做直線的一個方向向量。?方向向量空間直線的方向向量是唯一的嗎?一個空間向量能夠表示幾條空間直線的方向向量?例1:如圖所示的空間直角
2025-08-16 01:54
【總結(jié)】判定定理判定定理1、線線垂直線面垂直面面垂直定義性質(zhì)定理復(fù)習(xí)提問2、證明直二面角的方法:2)二面角的大小為9001)判定定理例1、已知∠
2025-07-23 08:32
【總結(jié)】1、定義:兩個平面相交,如果它們所成的二面角是直二面角,則兩個平面垂直????性質(zhì):1、凡是直二面角都相等2、兩個平面相交,可引成四個二面角,如果其中有一個是直二面角,那么其他各個二面角都是直二面角記作α⊥β一、兩平面垂直兩個平面相交,如果其中一個平面內(nèi)只有一
【總結(jié)】3.8點到平面的距離課堂互動講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標學(xué)習(xí)目標,并會求點到平面的距離.2.能利用直線的方向向量和平面的法向量求空間中的各種距離.3.體會向量方法在研究立體幾何中的作用.課前自主學(xué)案溫故夯基1.若點A(x1,y1,z1),
2024-11-12 17:11
【總結(jié)】空間兩個平面羅移豐??????二面角1打開的書一個平面內(nèi)的一條直線把這個平面分成兩個部分,其中的每一部分都叫做半平面。一條直線上的一個點把這條直線分成兩個部分,其中的每一部分都叫做射線。2l??AB?
2024-11-10 08:38
【總結(jié)】學(xué)習(xí)目標1熟練掌握面面垂直定義2熟練掌握面面垂直的判定定理及其證明過程3掌握證明面面垂直的常用方法1直二面角定義2互相垂直的平面αβCDABE平面與平面垂直的定義記作:畫法:問題:如果你是一個質(zhì)檢員,你怎樣去檢測、判斷建筑中的一面墻和地面是否垂直呢?
2024-11-09 00:20
【總結(jié)】平面與平面垂直的判定與性質(zhì)(習(xí)題課)例1:已知二面角,其大小為90°,,線段AB=2a,AB與成45°的角,與成30°的角,過點A、B作的垂線A
2024-11-09 09:23
【總結(jié)】08:29二面角08:29一、二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。1、半平面——αl二面角08:29從空間一直線出發(fā)的兩個半2、二面角的定義3、二面角的平面角角的平面角
【總結(jié)】雙曲線的定義及標準方程直線和平面垂直的定義如果一條直線和一個平面內(nèi)的任意一條直線都垂直,我們就說直線和平面互相垂直,記作.它們唯一的公共點即交點叫做垂足.直線叫做平面的垂線,平面叫做直線的垂面.過一點有且只有一條直線和一個平面垂直.過一點有且只有一個平面和一條直線垂直.
2024-11-09 04:00
【總結(jié)】βabABCD設(shè)異面直線a、b的夾角為θcosθ=??AB,CDcos||=AB·CD·AB||CD||θ=??AB,CD或θ=π-?
2025-05-14 22:58