【總結(jié)】立體幾何二面角,在長方體1111CDCD?????中,11???,D2????,?、F分別是??、C?的中點.證明1、1C、F、?四點共面,并求直線1CD與平面11CF??所成的角的大小.2.如題(19)圖,三棱錐PABC?中,
2024-11-24 15:52
【總結(jié)】直線與平面所成的角與二面角(二)-——二面角與平面和平面的垂直關系1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl
2024-11-17 23:19
【總結(jié)】二面角與平面和平面的垂直關系(一)1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl按此繼續(xù)l??AB??二
2025-01-12 23:48
【總結(jié)】3種求二面角的幾何法二面角的度量問題是立幾中學生比較困難的一個問題,課本上是通過它的平面角來進行度量的,關鍵在于充分利用平面角的定義。下面來介紹求二面角的大小的幾種方法:直二面角情況:一般是通過幾何求證的方法,主要依據(jù)是直線與平面垂直的判定定理。例1.如圖ABCD是矩形,AB=a,BC=b(ab),沿對角線AC把△ADC折起,使A
2025-06-20 01:46
【總結(jié)】平面法向量在立體幾何中的應用——利用法向量求二面角(一)平面的法向量的定義:n如果n??,那么向量n叫做平面?的法向量?1、利用平面法向量求直線與平面所成的角:直線與平面所成的角等于平面的法向量所在的直線與已知直線的夾角的余角。(二
2024-11-24 14:09
【總結(jié)】立體幾何專題之二面角問題北京大學光華管理學院何洋立體幾何高考情況簡述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問題高考情況簡述?除2022年北京
2025-07-20 07:01
【總結(jié)】一、作點在面上的射影(作垂線)1、已知矩形中,,,將矩形沿對角線把折起,使移到點,且在平面上的射影恰好在上.(Ⅰ)求證:;(Ⅱ)求證:平面平面;(Ⅲ)求二面角的余弦值.2、在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求證:BD⊥
2025-03-24 12:12
2025-08-04 10:03
【總結(jié)】二面角求法歸納18題,通常是立體幾何(12-14分),本題考查空間線面平行、線面垂直、面面垂直的判斷與證明,考查二面角的求法以及利用向量知識解決幾何問題的能力,同時考查空間想象能力、推理論證能力和運算能力。以下是求二面角的五種方法總結(jié),及題形歸納。定義法:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面,
2025-03-24 06:31
【總結(jié)】文科立體幾何線面角二面角專題學校:___________姓名:___________班級:___________考號:___________一、解答題1.如圖,在三棱錐P?ABC中,AB=BC=22,PA=PB=PC=AC=4,O為AC的中點.(1)證明:PO⊥平面ABC;(2)若點M在棱BC上,且二面角M?PA?C為30°,求PC與平面PAM所成角的正
2025-06-25 16:28
【總結(jié)】高中立體幾何中二面角的平面角的作法一、二面角的平面角的定義如圖(1),α、β是由l出發(fā)的兩個平面,O是l上任意一點OC∈α,且OC⊥l;CD∈β,且OD⊥l。這就是二面角的平面角的環(huán)境背景,即∠COD是二面角α—l—β的平面角,從中不難得到下列特征: Ⅰ、過棱上任意一點,其平面角是唯一的;Ⅱ、其平面角所在平面與其兩個半平面均垂直;另外,如果在O
2025-06-07 23:17
【總結(jié)】 《二面角的一種求法》說課稿 一、教材簡析: 1.地位與作用: 本節(jié)是高二數(shù)學下冊第九章《直線、平面、簡單幾何體》中相關9·6二面角的求解問題。是在立體幾何知識學習完畢,學生已具有...
2024-12-03 00:45
【總結(jié)】立體幾何綜合訓練(45)二面角二面角問題因其需要充分運用立體幾何第一章的線線、線面、面面關系,具有綜合性強,靈活性大的特點,因此,一直成為高考、會考的熱點。求解二面角問題一般可分為直接法和間接法二大類。一、直接法直接法就是根據(jù)已知條件,首先作出二面角的平面角,再求平面角大小的方法。求作二面角平面角的方法主要有:lab①利用定義即在二面角-l-的
2024-10-04 17:11
【總結(jié)】βabABCD設異面直線a、b的夾角為θcosθ=??AB,CDcos||=AB·CD·AB||CD||θ=??AB,CD或θ=π-?
2025-05-14 22:58
【總結(jié)】 知識點:二面角的求法一、思想方法求二面角的大小,是立體幾何計算與運用中的一個重點和難點.直接法的核心是作(或找)出二面角的平面角,間接法可利用投影、異面直線、空間向量等。常用的方法有以下幾種:方法一(定義法)即從二面角棱上一點在兩個面內(nèi)分別引棱的垂線如圖1。方法二(三垂線法)在二面角的一
2025-03-25 06:41