【總結(jié)】化二次型為標(biāo)準(zhǔn)形只含有平方項(xiàng)的二次型nnfkykyky????2221122稱為二次型的標(biāo)準(zhǔn)形(或法式).例如??312322213214542,,xxxxxxxxf????都為二次型;??23222132144,,xxxxxxf???為二次型的標(biāo)準(zhǔn)形.??323121321,,x
2025-01-19 08:22
【總結(jié)】培人家教網(wǎng)制作歡迎訪問備考MBA聯(lián)考線性代數(shù)沖關(guān)60題1.設(shè)矩陣,矩陣滿足,其中為的伴隨矩陣,是單位矩陣,則()2.設(shè)維向量是階單位
2025-03-25 07:09
【總結(jié)】線性代數(shù)?主講:王娟?教材:線性代數(shù)(第三版),何蘇陽、呂巍然、王子亭主編,石油大學(xué)出版社?安排:共32學(xué)時(shí),計(jì)劃講授前五章,平時(shí)成績占20%,期末成績占80%。一、學(xué)習(xí)必要性二、課程特點(diǎn)1、線性代數(shù)
2025-01-19 10:48
【總結(jié)】答疑題庫——線性代數(shù)與解析幾何(二)例1試證,正交向量組一定是線性無關(guān)的。證,設(shè)s???,,,21?是正交向量組,于是有??????0,,0,???iijiji????設(shè)有數(shù)skkk,,,21?,使02211????sskkk????,兩邊與i?作內(nèi)積得??
2025-08-21 12:55
【總結(jié)】分塊矩陣?分塊矩陣的概念?分塊矩陣的運(yùn)算?分塊矩陣求逆?求解矩陣方程,,,.AAAA?設(shè)是矩陣在矩陣的行之間加上一些橫(虛)線、在列之間加上一些豎(虛)線將矩陣形式上分成若干個小矩陣這些小矩陣稱為的以子塊
2025-01-17 09:37
【總結(jié)】說明:本次課件不作為課程內(nèi)容,沒有作業(yè),僅供參考!第1章矩陣與行列式【矩陣與行列式簡介】在計(jì)算機(jī)日益發(fā)展的今天,線性代數(shù)起著越來越重要的作用。線性代數(shù)起源于解線性方程組的問題,而利用矩陣來求解線性方程組的Gauss消元法至今仍是十分有效的計(jì)算機(jī)求解線性方程組的方法。矩陣是數(shù)學(xué)研究和應(yīng)用的一個重要工具,利用矩陣的
2025-02-22 00:04
【總結(jié)】馮媛難馮媛2,,.mnAkkkmknkAkAk???在矩陣中任取行列(),位于這些行列交叉處的個元素不改變它們在中所處的位置次序而得的階行列式,稱為矩陣的階子式一、矩陣秩的概念和性質(zhì)
2025-01-19 22:49
【總結(jié)】答疑題庫——線性代數(shù)與解析幾何(一)1、計(jì)算n階行列式000100002000010?????????nnDn??分析由定義知,n階行列式共有n!項(xiàng),每一項(xiàng)的一般形式為????nnppppppraaa,212121
【總結(jié)】第一篇:0907線性代數(shù)真題及答案 全國2009年7月高等教育自學(xué)考試 線性代數(shù)(經(jīng)管類)試題 課程代碼:04184試卷說明:在本卷中,AT表示矩陣A的轉(zhuǎn)置矩陣;A*表示A的伴隨矩陣;R(A)表...
2024-11-16 02:36
【總結(jié)】第七節(jié)克萊姆法則???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa???????????????22112222212111212111設(shè)線性方程組,,,,21不全為零若常數(shù)項(xiàng)nbbb?則稱此方程組為非齊次線性方程
2024-10-04 19:42
【總結(jié)】上頁下頁返回第二節(jié)矩陣的計(jì)算一、矩陣的加法二、數(shù)與矩陣相乘三、矩陣與矩陣相乘四、矩陣轉(zhuǎn)置五、方陣的行列式六、共軛矩陣七、矩陣的應(yīng)用上頁
2025-08-05 10:13
【總結(jié)】第矩陣的運(yùn)算一.矩陣的加法二.數(shù)與矩陣的乘法三.矩陣與矩陣的乘法四.矩陣的其它運(yùn)算五.小結(jié)思考題1、定義?????????????????????????mnmnmmmmnnnnbababababababababaB
2025-08-05 10:12
【總結(jié)】1班級:時(shí)間:年月日;星期教學(xué)目的掌握特征值與特征向量的概念、求法以及性質(zhì)。掌握相似矩陣的概念和性質(zhì),理解方陣A對角化的充要條件,會用實(shí)對稱矩陣對角化的基本方法將簡單對稱矩陣對角化作業(yè)重點(diǎn)相似矩陣與對稱矩陣對角化練習(xí)冊第43頁-46頁第5題
2024-12-08 01:39
【總結(jié)】第一篇:線性代數(shù)試卷 浙江大學(xué)2008-2009學(xué)年秋冬學(xué)期《線性代數(shù)I》課程期末考試試卷及參考答案 ì2x1?1.解線性方程組íx1?x?1-5x2-2x2-4x2+4x3+x3+6x3+x4-...
2024-10-15 12:31
【總結(jié)】1《線性代數(shù)與空間解析幾何》哈工大數(shù)學(xué)系代數(shù)與幾何教研室王寶玲線性方程組第五章2?齊次方程組?非齊次方程組?方程組在幾何中的應(yīng)用本章的主要內(nèi)容300)0(nnnnmmmnnaxaxaxaxaxaxaxax
2024-10-16 21:32