【總結(jié)】第4章不定積分第一類(lèi)換元積分法【教學(xué)目的】:1.理解第一類(lèi)換元積分法;2.會(huì)用第一類(lèi)換元積分法計(jì)算不定積分?!窘虒W(xué)重點(diǎn)】:1.用第一類(lèi)換元積分法計(jì)算不定積分?!窘虒W(xué)難點(diǎn)】:1.湊微分技巧?!窘虒W(xué)時(shí)數(shù)】:2學(xué)時(shí)【教學(xué)過(guò)程】:我們先看這樣一個(gè)例子,求不定積分,因?yàn)楸环e函數(shù)是的復(fù)合函數(shù),基本積分公式中沒(méi)有這種公式,但我們可以把原積
2025-04-17 13:04
【總結(jié)】一、基本內(nèi)容二、小結(jié)三、思考題第三節(jié)分部積分法問(wèn)題d?xxex??解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????dd,uvxuvuvx??????dd.uvuvvu????
2024-08-30 12:44
【總結(jié)】問(wèn)題???dxxex解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式一、基本內(nèi)容第四節(jié)不定積分的分部積分法例
2025-07-26 12:18
【總結(jié)】一、分部積分公式二、小結(jié)思考題第五節(jié)定積分的分部積分法設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??ddbbbaaauvuvvu????.定積分的分部積分公式推導(dǎo)??,vuvuuv???????()d,bbaauvxuv?????d
2024-08-20 16:42
【總結(jié)】().,,.,.,.上冊(cè)我們研究了一元函數(shù)一個(gè)自變量的函數(shù)及其微分但在許多實(shí)際問(wèn)題中常常會(huì)遇到一個(gè)變量依賴(lài)于多個(gè)變量的情形這就提出了多元函數(shù)的概念以及多元函數(shù)的微分和積分問(wèn)題本章將在一元函數(shù)
2025-01-19 10:12
【總結(jié)】1§3分部積分法定理若????uxvx與可導(dǎo),不定積分????uxvxdx??存在,則也存在,并有????uxvxdx??????????????,uxvxdxuxvxuxvxdx??????證明:????????
2024-09-01 14:16
【總結(jié)】高等數(shù)學(xué)電子教案武漢科技學(xué)院數(shù)理系第三節(jié)定積分的換元法和分部積分法一定積分的換元法定理1設(shè)函數(shù)f(x)在[a,b]上連續(xù),且x=φ(t)滿足條件:(1)φ(t)在[α,β]上連續(xù)可微;(2)當(dāng)t在[α,β]上變化時(shí),x=φ(t)的值在[a
2025-05-15 01:35
【總結(jié)】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.第
2025-04-21 04:54
【總結(jié)】第六章定積分應(yīng)用習(xí)題課一、定積分應(yīng)用的類(lèi)型1.幾何應(yīng)用?????平面圖形的面積特殊立體的體積平面曲線弧長(zhǎng)???旋轉(zhuǎn)體的體積平行截面面積為已知立體的體積2.物理應(yīng)用?????變力作功水壓力引力二、構(gòu)造微元的基本思想及解題步驟1.構(gòu)造微元的基本思想
2025-01-20 00:54
【總結(jié)】一、基本概念:具有某種特定性質(zhì)的事物的總體.組成這個(gè)集合的事物稱(chēng)為該集合的元素.},,,{21naaaA??}{所具有的特征xxM?有限集無(wú)限集,Ma?,Ma?.,,的子集是就說(shuō)則必若BABxAx??.BA?記作數(shù)集分類(lèi):N自然數(shù)集Z整數(shù)集Q有理數(shù)集R實(shí)數(shù)集數(shù)集間的關(guān)系:
【總結(jié)】數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)2010級(jí)畢業(yè)論文不等式證明的積分法是利用積分的定義,性質(zhì),以及用一些特殊的積分不等式來(lái)證明不等式。定積的概念例1設(shè)在連續(xù),證明證明將區(qū)間進(jìn)行等分,取因?yàn)閮蛇吶?duì)數(shù)得兩邊在時(shí)取極限得積分中值定理法積分中值定理如果函數(shù)在上連續(xù),則在內(nèi)至少存在一點(diǎn),使得例2試證當(dāng)時(shí),.證明因?yàn)?/span>
2025-07-26 09:48
【總結(jié)】第四章不定積分教學(xué)目的要求1、理解原函數(shù)的概念,不定積分的概念、幾何意義及性質(zhì)。2、掌握不定積分的基本公式,不定積分的換元積分法和分部積分法。3、了解簡(jiǎn)單有理函數(shù)的積分方法。學(xué)習(xí)重點(diǎn)和難點(diǎn)重點(diǎn)不定積分的計(jì)算難點(diǎn)不定積分的換元積分法和分部積分法。
2025-05-07 12:09
【總結(jié)】哈爾濱工程大學(xué)高等數(shù)學(xué)定義若函數(shù)),(yxf在),(000yxP的某個(gè)去心鄰域內(nèi)恒有),(),(00yxfyxf?,則稱(chēng)),(00yxf為此函數(shù)的一個(gè)極大值,),(000yxP
2025-01-19 08:48
【總結(jié)】1.計(jì)算下列定積分:⑴;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分換元法令,則,當(dāng)從單調(diào)變化到時(shí),從單調(diào)變化到,于是有。⑵;【解法一】應(yīng)用牛頓-萊布尼茲公式。【解法二】應(yīng)用定積分換元法令,則,當(dāng)從單調(diào)變化到1時(shí),從1單調(diào)變化到16,于是有。⑶;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分
2024-08-14 05:32
【總結(jié)】第三節(jié)定積分的計(jì)算法第五章不定積分換元積分法分部積分法定積分?定積分的計(jì)算法第六章二、定積分的分部積分法一、定積分的換元積分法第三節(jié)一、定積分的換元積分法引例求橢圓12222??byax解114SS
2025-07-22 23:06