【總結】1§矩陣§逆矩陣§初等矩陣§矩陣可逆的充分必要條件第二章矩陣代數(shù)2§矩陣矩陣的加法與數(shù)乘同型矩陣:兩個行數(shù)和列數(shù)均分別相等的矩陣.定義矩陣的相等:如果兩個矩陣是同型的(只有兩個同型的矩陣才能
2025-01-19 15:17
【總結】第一章行列式二階、三階行列式一、計算下列行列式1、2、3、二、解方程1、解:計算行列式得,因此2、解:計算行列式得,得,因此n階行列式定義及性質一、計算下列行列式1、2、3、4、5、將第2、3、4列乘以-1加到第一列得6、將第2、3、4行全部加到第1行將第1行乘以-1加到第2
2025-01-07 21:45
【總結】上頁下頁結束返回首頁1線性代數(shù)上頁下頁結束返回首頁2線性代數(shù)上頁下頁結束返回首頁3第一講n階行列式的定義上頁下頁結束返回首頁4第一章行列式在初等數(shù)學中,我們用代入消元法或加減消元法求解二元和三元線性方程組,可以
2025-01-19 15:16
【總結】Chapter4(1)正交矩陣與正交變換教學要求:1.了解正交變換與正交矩陣的概念以及它們的性質..正交矩陣的定義與性質一.正交變換二.正交矩陣的定義與性質一1.定義.,正交矩陣為則稱滿足階方陣若AEAAAn??2.性質;1)1(??A.)1,1,(2?????
2025-02-19 06:24
【總結】線線性性代代數(shù)數(shù)?LinearAlgebra第二章行列式1第二章行列式行列式(Determinant)是線性代數(shù)中的一個最基本、最常用的工具,最早出現(xiàn)于求解線性方程組.它被廣泛地應用于數(shù)學、物理、力學以及工程技術等領域.2第二章行
2025-01-17 08:02
【總結】《線性代數(shù)》期終試卷3(3學時)一、填空題(15’):1.設向量組,它的秩是(),一個最大線性無關組是().2.已知矩陣和相似,則x=().3.設是秩為的矩
2025-01-09 10:36
【總結】1線性代數(shù)第1講下載網址:.2第一章行列式§二階,三階行列式3(一)二階行列式1112112212212122aaaaaaaa??a11a12a21a22?+4例1.5152(1)31332?
2024-10-19 01:17
【總結】第三節(jié)逆矩陣,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A一、概念的引入在數(shù)的運算中,當數(shù)時,0?a有aa11??a其中為的倒數(shù),a(或稱的逆);在矩陣的運算中,E
2024-10-04 19:42
【總結】第二章矩陣及其運算?矩陣的概念?矩陣的運算?逆矩陣?矩陣分塊法第一節(jié)線性方程組和矩陣?矩陣概念的引入(線性方程組)?矩陣的定義?小結、思考題???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa
2025-08-05 10:13
2025-01-06 17:50
【總結】.,數(shù)是唯一確定的梯形矩陣中非零行的行梯形,行階把它變?yōu)樾须A變換總可經過有限次初等行任何矩陣nmA?.,,12階子式的稱為矩陣階行列式,的中所處的位置次序而得變它們在不改元素處的個),位于這些行列交叉列(行中任取矩陣在定義kAkAknkmkkkAnm???一、矩陣秩的概念矩陣的秩
2024-10-05 01:05
【總結】第一篇:線性代數(shù)試題1(推薦) 線性代數(shù)試題 課程代碼:02198 說明:|A|表示方陣A的行列式 一、單項選擇題(在每小題的四個備選答案中,選出一個正確答案,并將正確答案的序號填在題干的括號...
2024-10-09 07:54
【總結】線性代數(shù)魏福義,黃燕蘋主編?北京:中國農業(yè)出版社,2022.2(ISBN7109-08058-7)習題解(缺習題六題解)06學年第二學期復習題:習題一:4,5,6,7(4),10,11,13,14,15(1),16(3)(4),18,20,21,22,23,24,25,26,27,28,29
2025-01-09 00:33
【總結】線性代數(shù)主講教師:王琛暉廈門理工學院數(shù)理系教材:《線性代數(shù)》(第三版)趙樹嫄主編中國人民大學出版社課件制作人:廈門理工學院數(shù)理系王琛暉第一章行列式§用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2??
2024-10-13 18:48
【總結】一、計算排列的逆序數(shù)二、計算(證明)行列式三、克拉默法則1.行列式的定義??1212()122)1;nnppppppnDaaa??????1212()121)1;nnpppppnpDaaa??????12121122()()3)1.nnnniiij
2025-08-15 20:40