freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

沈陽(yáng)市初中數(shù)學(xué)試卷分類匯編易錯(cuò)壓軸選擇題精選:平行四邊形選擇題(及答案)(4)(編輯修改稿)

2025-04-02 04:38 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 ∵菱形ABCD的面積為8,對(duì)角線AC長(zhǎng)為4,∴BD=4,∵BC=CD,∠BCD=60176。,∴△BCD是等邊三角形,∴BD=BC=4,∵M(jìn)是BC的中點(diǎn),∴DM⊥BC,CM=BM=2,在Rt△CDM中,CM=2,CD=4,∴DM=,故選:C.【點(diǎn)睛】本題考查了軸對(duì)稱最短路線問(wèn)題,菱形的性質(zhì),等邊三角形的性質(zhì),直角三角形勾股定理;掌握利用軸對(duì)稱求最短距離,將PB與PM之和的最小值轉(zhuǎn)化為線段DM的長(zhǎng)是解題的關(guān)鍵.9.B【分析】由等腰三角形“三線合一”得ED⊥CA,根據(jù)三角形中位線定理可得EF=AB;由直角三角形斜邊上中線等于斜邊一半可得EG=CD,即可得EF=EG;連接FG,可證四邊形DEFG是平行四邊形,即可得FH=FD,由三角形中位線定理可證得S△OEF=S△AOB,進(jìn)而可得S△EFD=S△OEF+S△ODE=S?ABCD,而S△ACD=S?ABCD,推出S△EFDS△ACD,即可得出結(jié)論.【詳解】連接FG,如圖所示: ∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,AD=BC,AD∥BC,AB=CD,AB∥CD,∵BD=2AD,∴OD=AD,∵點(diǎn)E為OA中點(diǎn),∴ED⊥CA,故①正確;∵E、F、G分別是OA、OB、CD的中點(diǎn),∴EF∥AB,EF=AB,∵∠CED=90176。,G是CD的中點(diǎn),∴EG=CD, ∴EF=EG,故②正確;∵EF∥AB,AB∥CD,∴EF∥CD,EF=EG=DG,∴四邊形DEFG是平行四邊形, ∴FH=DH,即FH=FD,故③正確;∵△OEF∽△OAB, ∴S△OEF=S△AOB,∵S△AOB=S△AOD=S?ABCD,S△ACD=S?ABCD,∴S△OEF=S?ABCD,∵AE=OE,∴S△ODE=S△AOD=S?ABCD,∴S△EFD=S△OEF+S△ODE=S?ABCD+S?ABCDS?ABCD,∵S△ACDS?ABCD,∴S△EFDS△ACD,故④錯(cuò)誤;綜上,①②③正確;故選:B.【點(diǎn)睛】本題考查了平行四邊形性質(zhì)和判定,三角形中位線定理,三角形面積,直角三角形斜邊上中線性質(zhì),等腰三角形性質(zhì)等知識(shí);熟練運(yùn)用三角形中位線定理、等腰三角形的性質(zhì)是解題關(guān)鍵.10.B【分析】通過(guò)判斷△BDE為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)和勾股定理可對(duì)①進(jìn)行判斷;根據(jù)等角的余角相等得到∠BHE=∠C,再根據(jù)平行四邊形的性質(zhì)得到∠A=∠C,則∠A=∠BHE,于是可對(duì)②進(jìn)行判斷;證明△BEH≌△DEC,得到BH=CD,接著由平行四邊形的性質(zhì)得AB=CD,則AB=BH,可對(duì)③進(jìn)行判斷;因?yàn)椤螧HD=90176。+∠EBH,∠BDG=90176。+∠BDE,由∠BDE>∠EBH,推出∠BDG>∠BHD,可判斷④.【詳解】解:∵∠DBC=45176。,DE⊥BC,∴△BDE為等腰直角三角形,所以①錯(cuò)誤;∵BF⊥CD,∴∠C+∠CBF=90176。,而∠BHE+∠CBF=90176。,∴∠BHE=∠C,∵四邊形ABCD為平行四邊形,∴∠A=∠C,∴∠A=∠BHE,所以②正確;在△BEH和△DEC中,∴△BEH≌△DEC,∴BH=CD,∵四邊形ABCD為平行四邊形,∴AB=CD,∴AB=BH,所以③正確;∵∠BHD=90176。+∠EBH,∠BDG=90176。+∠BDE,∵∠BDE=∠DBE>∠EBH,∴∠BDG>∠BHD,所以④錯(cuò)誤;故選:B.【點(diǎn)睛】本題考查平行四邊形的性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形的判定和性質(zhì),三角形外角的性質(zhì).熟練掌握平行四邊形的性質(zhì)并能靈活運(yùn)用是解題關(guān)鍵,本題中主要用到平行四邊形對(duì)邊相等,對(duì)角相等.11.D【分析】由勾股定理可求BE的長(zhǎng),由折疊的性質(zhì)可得CE=EF=2,BE⊥CF,F(xiàn)H=CH,由面積法可求CH=,由勾股定理可求EH的長(zhǎng),由三角形中位線定理可求DF=2EH=.【詳解】解:如圖,連接CF,交BE于H,∵在正方形ABCD中,AB=4,E是CD的中點(diǎn),∴BC=CD=4,CE=DE=2,∠BCD=90176。,∴BE=,∵將△BCE沿BE翻折至△BFE,∴CE=EF=2,BE⊥CF,F(xiàn)H=CH,∵S△BCE=BECH=BCCE,∴CH=,∴EH=,∵CE=DE,F(xiàn)H=CH,∴DF=2EH=,故選:D.【點(diǎn)睛】本題考查了翻折變換,正方形的性質(zhì),全等三角形的判定與性質(zhì),掌握折疊的性質(zhì)是本題的關(guān)鍵.12.A【分析】先利用勾股定理求出AC=5,再令,則,利用勾股定理求出答案.【詳解】∵四邊形為矩形,∴,∵,在中,由勾股定理得:,得:,令,則,由折疊性質(zhì)可知:,故,在中,由勾股定理得:,∴,∴.故.故選:A.【點(diǎn)睛】此題考查矩形的性質(zhì),勾股定理,折疊的性質(zhì),涉及直角三角形的邊長(zhǎng)的計(jì)算題時(shí)可多次進(jìn)行勾股定理的計(jì)算.13.C【解析】連接BD,∵四邊形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O為AC中點(diǎn),∴BD也過(guò)O點(diǎn),∴OB=OC,∵∠COB=60176。,OB=OC,∴△OBC是等邊三角形,∴OB=BC=OC,∠OBC=60176。,在△OBF與△CBF中, ,∴△OBF≌△CBF(SSS),∴△OBF與△CBF關(guān)于直線BF對(duì)稱,∴FB⊥OC,OM=CM;∴①正確,∵∠OBC=60176。,∴∠ABO=30176。,∵△OBF≌△CBF,∴∠OBM=∠CBM=30176。,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易證△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四邊形EBFD是菱形,∴③正確,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB錯(cuò)誤.∴②錯(cuò)誤,∵∠OMB=∠BOF=90176。,∠OBF=30176。,∴MB=,OF=,∵OE=OF,∴MB:OE=3:2,∴④正確;故選C.點(diǎn)睛:本題考查了矩形的性質(zhì),菱形的判定和性質(zhì),全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì)以及三角函數(shù)等的知識(shí),會(huì)綜合運(yùn)用這些知識(shí)點(diǎn)解決問(wèn)題是解題的關(guān)鍵.14.A【分析】如圖1,根據(jù)線段垂直平分線的性質(zhì)得到PA=PD,QA=QD,則根據(jù)SSS可判斷APQ≌DPQ,則可對(duì)甲進(jìn)行判斷;如圖2,根據(jù)平行四邊形的判定方法先證明四邊形APDQ為平行四邊形,則根據(jù)平行四邊形的性質(zhì)得到PA=DQ,PD=AQ,則根據(jù)SSS可判斷△APQ≌△DQP,則可對(duì)乙進(jìn)行判斷.【詳解】解:如圖1,∵PQ垂直平分AD,∴PA=PD,,QA=QD,∵PQ=PQ,∴△APQ≌△DPQ(SSS),所以甲正確;如圖2,∵PD∥AQ,DQ∥AP,∴四邊形APDQ為平行四達(dá)形,∴PA=DQ,,PD=AQ,∵PQ=QP,∴△APQ≌△DQP(SSS),所以乙正確;故選:A.【點(diǎn)睛】本題考查了作圖復(fù)雜作圖,復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法,解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作,也考查了線段垂直平分線的性質(zhì)、平行四邊形的判定與性質(zhì)和三角形全等的判定.15.A【分析】設(shè),先根據(jù)平行四邊形的性質(zhì)可得,再根據(jù)直角三角形的兩銳角互余、角的和差可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)、勾股定理可得,從而可得,最后利用平行四邊形的面積公式即可得.【詳解】設(shè),四邊形ABCD是平行四邊形,,又,解得,即,是等腰直角三角形,,平行四邊形ABCD的面積是,故選:A.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、直角三角形的兩銳角互余、等腰直角三角形的判定與性質(zhì)、勾股定理等知識(shí)點(diǎn),熟練掌握平行四邊形的性質(zhì)是解題關(guān)鍵.16.C【分析】根據(jù)三角形的中位線定理“三角形的中位線平行于第三邊”可得,再由45176。角可證△ABQ為等腰直角三角形,從而可得可得,進(jìn)而證明,利用三角形的全等性質(zhì)求解即可.【詳解】解:如圖所示:連接,延長(zhǎng)交于點(diǎn),延長(zhǎng)交于,延長(zhǎng)交于.,,點(diǎn)為兩條高的交點(diǎn),為邊上的高,即:,由中位線定理可得,,故①正確;,,,根據(jù)以上條件得,,故②正確;,,故③成立;無(wú)法證明,故④錯(cuò)誤.綜上所述:正確的是①②③,故選C.【點(diǎn)睛】本題考點(diǎn)在于三角形的中位線和三角形全等的判斷及應(yīng)用.解題關(guān)鍵是證明.17.D【分析】過(guò)點(diǎn)F作FH⊥CD,交直線CD于點(diǎn)Q,則∠EHF=90176。,易證∠ADE=∠EHF,由正方形的性質(zhì)得出∠AEF=90176
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1