freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)專題題庫∶二次函數(shù)的綜合題含答案(編輯修改稿)

2025-03-30 22:20 本頁面
 

【文章內(nèi)容簡介】 坐標(biāo);②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到∠AM1B=2∠ACB,再確定N(3,2),AC的解析式為y=5x5,E點(diǎn)坐標(biāo)為(,),利用兩直線垂直的問題可設(shè)直線EM1的解析式為y=x+b,把E(,)代入求出b得到直線EM1的解析式為y=x,則解方程組得M1點(diǎn)的坐標(biāo);作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對稱點(diǎn)M2,如圖2,利用對稱性得到∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x5),根據(jù)中點(diǎn)坐標(biāo)公式得到3=,然后求出x即可得到M2的坐標(biāo),從而得到滿足條件的點(diǎn)M的坐標(biāo).詳解:(1)當(dāng)x=0時,y=x﹣5=﹣5,則C(0,﹣5),當(dāng)y=0時,x﹣5=0,解得x=5,則B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴拋物線解析式為y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,則A(1,0),∵B(5,0),C(0,﹣5),∴△OCB為等腰直角三角形,∴∠OBC=∠OCB=45176。,∵AM⊥BC,∴△AMB為等腰直角三角形,∴AM=AB=4=2,∵以點(diǎn)A,M,P,Q為頂點(diǎn)的四邊形是平行四邊形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,則∠PDQ=45176。,∴PD=PQ=2=4,設(shè)P(m,﹣m2+6m﹣5),則D(m,m﹣5),當(dāng)P點(diǎn)在直線BC上方時,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,當(dāng)P點(diǎn)在直線BC下方時,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,綜上所述,P點(diǎn)的橫坐標(biāo)為4或或;②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,∵M(jìn)1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB為等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式為y=5x﹣5,E點(diǎn)坐標(biāo)為(,﹣,設(shè)直線EM1的解析式為y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直線EM1的解析式為y=﹣x﹣解方程組得,則M1(,﹣);作直線BC上作點(diǎn)M1關(guān)于N點(diǎn)的對稱點(diǎn)M2,如圖2,則∠AM2C=∠AM1B=2∠ACB,設(shè)M2(x,x﹣5),∵3=∴x=,∴M2(,﹣).綜上所述,點(diǎn)M的坐標(biāo)為(,﹣)或(,﹣).點(diǎn)睛:本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)、等腰直角的判定與性質(zhì)和平行四邊形的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標(biāo)與圖形性質(zhì);會運(yùn)用分類討論的思想解決數(shù)學(xué)問題.8.某商場購進(jìn)一批單價為4元的日用品.若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù)關(guān)系.(1)試求y與x之間的函數(shù)關(guān)系式;(2)當(dāng)銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?【答案】(1)(2)當(dāng)銷售價格定為6元時,每月的利潤最大,每月的最大利潤為40000元【解析】解:(1)由題意,可設(shè)y=kx+b,把(5,30000),(6,20000)代入得:,解得:?!鄖與x之間的關(guān)系式為:。(2)設(shè)利潤為W,則,∴當(dāng)x=6時,W取得最大值,最大值為40000元。答:當(dāng)銷售價格定為6元時,每月的利潤最大,每月的最大利潤為40000元。(1)利用待定系數(shù)法求得y與x之間的一次函數(shù)關(guān)系式。(2)根據(jù)“利潤=(售價﹣成本)售出件數(shù)”,可得利潤W與銷售價格x之間的二次函數(shù)關(guān)系式,然后求出其最大值。9. 閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點(diǎn)的“特征線”.例如,點(diǎn)M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.問題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B、C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.(1)直接寫出點(diǎn)D(m,n)所有的特征線;(2)若點(diǎn)D有一條特征線是y=x+1,求此拋物線的解析式;(3)點(diǎn)P是AB邊上除點(diǎn)A外的任意一點(diǎn),連接OP,將△OAP沿著OP折疊,點(diǎn)A落在點(diǎn)A′的位置,當(dāng)點(diǎn)A′在平行于坐標(biāo)軸的D點(diǎn)的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點(diǎn)落在OP上?【答案】(1)x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2);(3)拋物線向下平移或距離,其頂點(diǎn)落在OP上.【解析】試題分析:(1)根據(jù)特征線直接求出點(diǎn)D的特征線;(2)由點(diǎn)D的一條特征線和正方形的性質(zhì)求出點(diǎn)D的坐標(biāo),從而求出拋物線解析式;(2)分平行于x軸和y軸兩種情況,由折疊的性質(zhì)計算即可.試題解析:解:(1)∵點(diǎn)D(m,n),∴點(diǎn)D(m,n)的特征線是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)點(diǎn)D有一條特征線是y=x+1,∴n﹣m=1,∴n=m+1.∵拋物線解析式為,∴,∵四邊形OABC是正方形,且D點(diǎn)為正方形的對稱軸,D(m,n),∴B(2m,2m),∴,將n=m+1帶入得到m=2,n=3;∴D(2,3),∴拋物線解析式為.(3)①如圖,當(dāng)點(diǎn)A′在平行于y軸的D點(diǎn)的特征線時:根據(jù)題意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60176。,∴∠A′OP=∠AOP=30176。,∴MN==,∴拋物線需要向下平移的距離==.②如圖,當(dāng)點(diǎn)A′在平行于x軸的D點(diǎn)的特征線時,設(shè)A′(p,3),則OA′=OA=4,OE=3,EA′==,∴A′F=4﹣,設(shè)P(4,c)(c>0),在Rt△A′FP中,(4﹣)2+(3﹣c)2=c2,∴c=,∴P(4,),∴直線OP解析式為y=x,∴N(2,),∴拋物線需要向下平移的距離=3﹣=.綜上所述:拋物線向下平移或距離,其頂點(diǎn)落在OP上.點(diǎn)睛:此題是二次函數(shù)綜合題,主要考查了折疊的性質(zhì),正方形的性質(zhì),解答本題的關(guān)鍵是用正方形的性質(zhì)求出點(diǎn)D的坐標(biāo).10.已知函數(shù)(為常數(shù))(1)當(dāng),①點(diǎn)在此函數(shù)圖象上,求的值;②求此函數(shù)的最大值.(2)已知線段的兩個端點(diǎn)坐標(biāo)分別為,當(dāng)此函數(shù)的圖象與線段只有一個交點(diǎn)時,直接寫出的取值范圍.(3)當(dāng)此函數(shù)圖象上有4個點(diǎn)到軸的距離等于4,求的取值范圍.【答案】(1)①②;(2),時,圖象與線段只有一個交點(diǎn);(3)函數(shù)圖象上有4個點(diǎn)到軸的距離等于4時,或.【解析】【分析】(1)①將代入;②當(dāng)時,當(dāng)時有最大值為5;當(dāng)時,當(dāng)時有最大值為;故函數(shù)的最大值為;(2)將點(diǎn)代入中,得到,所以時,圖象與線段只有一個交點(diǎn);將點(diǎn))代入和中,得到,所以時圖象與線段只有一個交點(diǎn);(3)當(dāng)時,得
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1