freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx中考數(shù)學與平行四邊形有關的壓軸題(編輯修改稿)

2025-03-30 22:20 本頁面
 

【文章內容簡介】 E,由旋轉可得,∠DAD39。=60176。,∴∠EAD39。=30176。,∵AB=2=AD39。,∴D39。E=AD39。=,AE=,∴BE=2+,∴Rt△BD39。E中,BD39。2=D39。E2+BE2=()2+(2+)2=16+8②以點A為旋轉中心將正方形ABCD順時針旋轉60176。,如圖所示:過B作BF⊥AD39。于F,旋轉可得,∠DAD39。=60176。,∴∠BAD39。=30176。,∵AB=2=AD39。,∴BF=AB=,AF=,∴D39。F=2﹣,∴Rt△BD39。F中,BD39。2=BF2+D39。F2=()2+(2)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質,矩形的判定,旋轉的性質,線段垂直平分線的性質以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構造直角三角形,依據(jù)勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.8.如圖1,矩形ABCD中,AB=8,AD=6;點E是對角線BD上一動點,連接CE,作EF⊥CE交AB邊于點F,以CE和EF為鄰邊作矩形CEFG,作其對角線相交于點H.(1)①如圖2,當點F與點B重合時,CE=  ,CG=  ;②如圖3,當點E是BD中點時,CE=  ,CG= ?。? (2)在圖1,連接BG,當矩形CEFG隨著點E的運動而變化時,猜想△EBG的形狀?并加以證明; (3)在圖1,的值是否會發(fā)生改變?若不變,求出它的值;若改變,說明理由; (4)在圖1,設DE的長為x,矩形CEFG的面積為S,試求S關于x的函數(shù)關系式,并直接寫出x的取值范圍.【答案】(1), ,5, ;(2)△EBG是直角三角形,理由詳見解析;(3) ;(4)S=x2﹣x+48(0≤x≤).【解析】【分析】(1)①利用面積法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜邊中線定理求出CE,再利用相似三角形的性質求出EF即可;(2)根據(jù)直角三角形的判定方法:如果一個三角形一邊上的中線等于這條邊的一半,則這個三角形是直角三角形即可判斷;(3)只要證明△DCE∽△BCG,即可解決問題;(4)利用相似多邊形的性質構建函數(shù)關系式即可;【詳解】(1)①如圖2中,在Rt△BAD中,BD==10,∵S△BCD=?CD?BC=?BD?CE,∴CE=.CG=BE=.②如圖3中,過點E作MN⊥AM交AB于N,交CD于M.∵DE=BE,∴CE=BD=5,∵△CME∽△ENF,∴,∴CG=EF=,(2)結論:△EBG是直角三角形.理由:如圖1中,連接BH.在Rt△BCF中,∵FH=CH,∴BH=FH=CH,∵四邊形EFGC是矩形,∴EH=HG=HF=HC,∴BH=EH=HG,∴△EBG是直角三角形.(3)F如圖1中,∵HE=HC=HG=HB=HF,∴C、E、F、B、G五點共圓,∵EF=CG,∴∠CBG=∠EBF,∵CD∥AB,∴∠EBF=∠CDE,∴∠CBG=∠CDE,∵∠DCB=∠ECG=90176。,∴∠DCE=∠BCG,∴△DCE∽△BCG,∴.(4)由(3)可知:,∴矩形CEFG∽矩形ABCD,∴,∵CE2=(x)2+)2,S矩形ABCD=48,∴S矩形CEFG= [(x)2+()2].∴矩形CEFG的面積S=x2x+48(0≤x≤).【點睛】本題考查相似三角形綜合題、矩形的性質、相似三角形的判定和性質、勾股定理、直角三角形的判定和性質、相似多邊形的性質和判定等知識,解題的關鍵是靈活運用所學知識解決問題,學會添加常用輔助線,構造相似三角形或直角三角形解決問題,屬于中考壓軸題.9.小明在矩形紙片上畫正三角形,他的做法是:①對折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF,把紙片展平;②沿折痕BG折疊紙片,使點C落在EF上的點P處,再折出PB、PC,最后用筆畫出△PBC(圖1).(1)求證:圖1中的 PBC是正三角形: (2)如圖2,小明在矩形紙片HIJK上又畫了一個正三角形IMN,其中IJ=6cm,且HM=JN.①求證:IH=IJ②請求出NJ的長; (3)小明發(fā)現(xiàn):在矩形紙片中,若一邊長為6cm,當另一邊的長度a變化時,在矩形紙片上總能畫出最大的正三角形,但位置會有所不同.請根據(jù)小明的發(fā)現(xiàn),畫出不同情形的示意圖(作圖工具不限,能說明問題即可),并直接寫出對應的a的取值范圍.【答案】(1)證明見解析;(2)①證明見解析;②126(3)3<a<4,a>4【解析】分析:(1)由折疊的性質和垂直平分線的性質得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15176。,繼而可得∠NQJ=30176。,設NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質、直角三角形的性質、勾股定理進行計算,畫出圖形即可.(1)證明:∵①對折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點C落在EF上的點P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90176。∵△MNJ是等邊三角形∴MI=NI在Rt△MHI和Rt△JNI中 ∴Rt△MHI≌Rt△JNI(HL)∴HI=IJ②在線段IJ上取點Q,使IQ=NQ∵Rt△IHM≌Rt△IJN,∴∠HIM=∠JIN,∵∠HIJ=90176。、∠MIN=60176。,∴∠HIM=∠JIN=15176。,由QI=QN知∠JIN=∠QNI=15176。,∴∠NQJ=30176。,設NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=126,即NJ=126(cm).(3)分三種情況:①如圖:設等邊三角形的邊長為b,則0<b≤6,則tan60176。=,∴a=,∴0<b≤=;②如圖當DF與DC重合時,DF=DE=6,∴a=sin60176。DE==,當DE與DA重合時,a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30176?!郉F=∴a>點睛:本題是四邊形的綜合題目,考查了折疊的性質、等邊三角形的判定與性質、旋轉的性質、直角三角形的性質、正方形的性質、全等三角形的判定與性質等知識;本題綜合性強,難度較大.10.如圖1所示,(1)在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點,若∠AMN=60176。,求證:AM=MN.(2)若將(1)中“正三角形ABC”改為“正方形ABCD”,N是∠DCP的平分線上一點,若∠AMN=90176。,則AM=MN是否成立?若成立,請證明;若不成立,說明理由.(3)若將(2)中的“正方形ABCD”改為“正n邊形A1A2…An“,其它條件不變,請你猜想:當∠An﹣2MN=_____176。時,結論An﹣2M=MN仍然成立.(不要求證明) 【答案】【解析】
點擊復制文檔內容
黨政相關相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1