【總結】第1頁共4頁八年級數(shù)學勾股定理拓展提高(勾股定理)拔高練習試卷簡介:本測試卷共有13道題,其中5道填空題,5道解答題,3道證明題,分四個板塊,板塊一為回顧練習,回顧暑期學到的關于勾股定理的主要知識,相關題目為教材1、2、3題;板塊二為直角三角形六大性質,勾股定理只是直角三角形六大性質之一,將直角三角形
2025-08-11 10:00
【總結】八年級上第一章《勾股定理》測試題班級姓名成績一、選擇題:(每小題4分,共40分)1、下列四組數(shù)據(jù)不能作為直角三角形的三邊長的是()A.6、8、10B.5、12、13C.12、18、22D.9、
2025-03-24 02:41
【總結】第一篇:八年級數(shù)學元勾股定理教案 課題:《勾股定理》 張窩中學馬宏躍 一、教材分析: 1、人民教育出版社出版,人民教育出版社中學數(shù)學室編著,九年義務教育八年級教科書《幾何》,第三章第五單元《勾...
2024-11-04 17:21
【總結】八年級數(shù)學競賽培訓:勾股定理 一、填空題(共9小題,每小題4分,滿分36分)1.(4分)(2001?重慶)如圖,以等腰直角三角形ABC的斜邊AB為邊向內作等邊△ABD,連接DC,以DC為邊作等邊△DCE.B、E在C、D的同側,若AB=,則BE= _________?。?.(4分)如圖所示,在△ABC中,AB=5cm,AC=13cm,BC邊上的中
2025-04-04 03:30
【總結】探究與猜想通過觀察,你得到直角三角形三邊有什么關系?為什么?.,,,1222cbacba??那么斜邊長為別為角邊長分如果直角三角形的兩直命題黃實朱實朱實朱實朱實ba22:ba?它們的面積和acab.,,,1222cbacba??那么斜邊長為別為
2024-11-21 23:19
【總結】第一章勾股定理【知識點歸納】考點一:勾股定理(1)對于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。(2)結論:①有一個角是30°的直角三角形,30°角所對的直角邊等于斜邊的一半。②有一個角是45°的直角三角形是等腰直角三角形。③直角
2025-04-04 03:28
【總結】武威第十九中學2012-2013學年度第二學期八年級第三單元(章)教材分析單元分析本章主要研究勾股定理和勾股定理的逆定理,包括它們的發(fā)現(xiàn)、證明和應用。全章分為兩節(jié),,。,教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的
2025-06-07 15:23
【總結】勾股定理的有關證明勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方a2+b2=c2b2a211美麗的勾股樹2020年,在北京舉行的國際數(shù)學家大會會標趙爽的“弦圖”早在公元3世紀,我國數(shù)學家趙爽就用左邊的圖形驗證了“勾股定理”
2024-11-11 23:17
【總結】第一篇:2017-2018學年八年級數(shù)學《勾股定理》單元測試 2017-2018學年八年級數(shù)學《勾股定理》單元測試(1) 一、選擇題(共13小題) 1.如圖,點E在正方形ABCD內,滿足∠AEB...
2024-11-04 12:55
【總結】第1頁共5頁八年級數(shù)學勾股定理及其逆定理(勾股定理)基礎練習試卷簡介:全卷共6個選擇題,5個填空題,2個大題,分值100,測試時間30分鐘。本套試卷立足基礎,主要考察了學生對勾股定理及其逆定理基礎知識及基本運用的的掌握。各個題目難度有階梯性,學生在做題過程中可以回顧本章知識點,認清自己對知識的掌握及靈活運用程
2025-08-20 18:06
【總結】勾股定理典型題型題型一:利用勾股定理求直角三角形的邊長例一若直角三角形的兩邊長分別為3cm,4cm,則第三邊長為題型二:勾股定理在軸對稱問題中的應用例二如圖,在中,∠B=°,AB的垂直平分線交BC于點D,BD=,AEBC于點E,求AE的長。
【總結】勾股定理一、選擇題(每小題4分,共12分),每個小正方形的邊長為1,△ABC的三邊a,b,c的大小關系是( )cb bcab ba2.(2013·南京中考)設邊長為3的正方形的對角線長為a,下列關于a的四種說法:①a是無理數(shù);②a可以用數(shù)軸上的一個點來表示;③3a4
2025-06-24 03:53
2024-11-09 21:05
【總結】勾股定理教案課題:(1)課型:新授課【學習目標】:1.了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內容,會用面積法證明勾股定理。2.培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結規(guī)律的意識和能力。【學習重點】:勾股定理的內容及證明?!緦W習難點】:勾股定理的證明。【學習過程】一、課前預習1、直角△ABC的主要性質是:∠C=90°(用幾何語言表示)(1)兩銳角之間
2025-04-17 12:28
【總結】八年級數(shù)學培優(yōu)專題講解《勾股定理》【培優(yōu)圖解】【技法透析】勾股定理是幾何中重要的定理之一,它是把直角三角形的“形”與三邊關系這一“數(shù)”結合起來,是數(shù)形結合思想方法的典范.1.勾股定理反逆定理的應用主要用于計算和證明等.2.勾股數(shù)的推算公式①若任取兩個正整數(shù)m、n(mn),那么m2-n2,2mn,m2+n2是一組勾股數(shù).②如果k是大于1的奇數(shù),那么k
2025-04-04 03:29