【總結】勾股定理教案課題:(1)課型:新授課【學習目標】:1.了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理。2.培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結規(guī)律的意識和能力?!緦W習重點】:勾股定理的內(nèi)容及證明?!緦W習難點】:勾股定理的證明?!緦W習過程】一、課前預習1、直角△ABC的主要性質是:∠C=90°(用幾何語言表示)(1)兩銳角之間
2025-04-17 12:28
【總結】八年級數(shù)學培優(yōu)專題講解《勾股定理》【培優(yōu)圖解】【技法透析】勾股定理是幾何中重要的定理之一,它是把直角三角形的“形”與三邊關系這一“數(shù)”結合起來,是數(shù)形結合思想方法的典范.1.勾股定理反逆定理的應用主要用于計算和證明等.2.勾股數(shù)的推算公式①若任取兩個正整數(shù)m、n(mn),那么m2-n2,2mn,m2+n2是一組勾股數(shù).②如果k是大于1的奇數(shù),那么k
2025-04-04 03:29
【總結】第一篇:八年級數(shù)學_勾股定理的逆定理說課稿(精品教案) 勾股定理的逆定理說課稿 尊敬的各位評委,各位老師,大家好: 我今天說課的內(nèi)容是《勾股定理的逆定理》第一課時。下面我將從教材、目標、重點難點...
2024-11-04 17:21
【總結】第一篇:人教版八年級數(shù)學下冊《勾股定理逆定理》教學反思 人教版八年級數(shù)學下冊《勾股定理逆定理》教學反思 我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直...
2024-11-04 17:12
【總結】勾股定理典型題型題型一:利用勾股定理求直角三角形的邊長例一若直角三角形的兩邊長分別為3cm,4cm,則第三邊長為題型二:勾股定理在軸對稱問題中的應用例二如圖,在中,∠B=°,AB的垂直平分線交BC于點D,BD=,AEBC于點E,求AE的長。
2025-04-04 03:28
【總結】勾股定理的有關證明勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方a2+b2=c2b2a211美麗的勾股樹2020年,在北京舉行的國際數(shù)學家大會會標趙爽的“弦圖”早在公元3世紀,我國數(shù)學家趙爽就用左邊的圖形驗證了“勾股定理”
2024-11-09 21:05
【總結】八年級數(shù)學第一章《勾股定理》練習題一.選擇題(12×3′=36′)1.已知一個Rt△的兩邊長分別為3和4,則第三邊長的平方是( ?。〢、25 B、14 C、7 D、7或252.下列各組數(shù)中,以a,b,c為邊的三角形不是Rt△的是( ?。〢、a=,b=2,c=3 B、a=7,b=24,c=25C、a=6,b=8,c=10
2025-04-04 03:30
【總結】完美WORD格式BA6cm3cm1cm勾股定理拓展提高題1、如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.①如果用一根細線從點A開始經(jīng)過4個側面纏繞一圈到達點B,那么所用細線最短需要__________cm;②如果
2025-03-24 13:00
【總結】《勾股定理》練習 一、選擇——基礎知識運用 1.如圖,以直角三角形a、b、c為邊,向外作等邊三角形,半圓,等腰直角三角形和正方形,上述四種情況的面積關系滿足S1+S2=S3圖形個數(shù)有( ?。? ...
2024-12-06 03:58
【總結】八年級(上冊)初中數(shù)學勾股定理的逆定理昭陽湖初級中學八年級數(shù)學備課組勾股定理的內(nèi)容是什么?直角三角形兩直角邊的平方和等于斜邊的平方.ABC勾股定理的逆定理如果三角形有兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。逆命題:DFE勾股定理的逆定理ABCa
2024-12-08 09:51
【總結】依提木孔鄉(xiāng)中學買買提依力·吾司曼《勾股定理》練習題一、選擇題(12×3′=36′)1.已知一個Rt△的兩邊長分別為3和4,則第三邊長的平方是( )A、25 B、14 C、7 D、7或252.下列各組數(shù)中,以a,b,c為邊的三角形不是Rt△的是( )A、a=,b=2,c=3 B、a=7,b=24,
2025-04-04 03:24
【總結】開心果初二年級專題輔導材料第5期輔導時間:3月23日分式及分式方程復習專題一、典型例題例1:下列哪些式子是分式?哪些是整式?,,,,,,,例2:已知分式(1)當x為何值時,分式無意義?(2)當x為何值時,分式有意義?(3)當x為何值時,分式的值為零?
2025-03-24 02:08
【總結】受臺風麥莎影響,一棵樹在離地面4米處斷裂,樹的頂部落在離樹跟底部3米處,這棵樹折斷前有多高?y=04米3米(1)觀察圖1-1正方形A中含有個小方格,即A的面積是個單位面積。正方形B的面積是個單位面積。正方形C的
2024-11-06 14:35
【總結】第1頁共2頁八年級數(shù)學下冊同步拔高(綜合+強化)人教版勾股定理應用-折疊專題一、單選題(共5道,每道20分),在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.B.
2024-08-11 09:27
【總結】第一頁,編輯于星期六:七點五十二分。,第二頁,編輯于星期六:七點五十二分。,第三頁,編輯于星期六:七點五十二分。,第四頁,編輯于星期六:七點五十二分。,第五頁,編輯于星期六:七點五十二分。,第六頁,編...
2024-10-22 03:56