【總結(jié)】3.基本不等式的證明學習目標預習導學典例精析欄目鏈接情景導入如下圖所示,以線段a+b的長為直徑作圓,在直徑AB上取點C,使AC=a,CB=b,過點C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2024-11-17 19:03
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-08 20:20
【總結(jié)】第3章不等式(A)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.若A=(x+3)(x+7),B=(x+4)(x+6),則A、B的大小關(guān)系為________.2.原點和點(1,1)在直線x+y=a兩側(cè),則a的取值范圍是________.3.不等式
2024-12-05 00:27
【總結(jié)】基本不等式的應用課時目標;(小)值問題.1.設x,y為正實數(shù)(1)若x+y=s(和s為定值),則當______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當______時,和x+y有最____值,且這個值為______.2.利用
2024-12-05 10:12
【總結(jié)】第3章不等式(B)(時間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.若a1,y1,且14lnx,14,lny成等比
2024-12-04 22:29
【總結(jié)】不等關(guān)系與不等式教學目標:1.知識與技能:掌握不等式的基本性質(zhì),會用不等式的性質(zhì)證明簡單不等式,掌握比較大小的方法.2.過程與方法:通過解決具體問題,學會依據(jù)具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數(shù)學在生活中的重要作用,培養(yǎng)嚴謹?shù)乃季S習慣.重點:不等式的概念和比
2024-12-09 03:41
【總結(jié)】不等關(guān)系與不等式(1)教學目標:1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量不等關(guān)系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì),會用不等式的性質(zhì)證明簡單的不等式.2.過程與方法:通過解決具體問題,學會依據(jù)具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數(shù)
【總結(jié)】2021/1/61高中數(shù)學復習課代數(shù)第五章不等式第一課時[知識要點]本章的知識要點包括:不等式、不等式的性質(zhì)、不等式的證明、不等式的解法、含有絕對值的不等式。這些知識點間和內(nèi)在
2024-11-30 12:27
【總結(jié)】 大家網(wǎng) 11/12高中數(shù)學不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應用不等式的性質(zhì)和運算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當a1時,原
2025-06-07 23:55
【總結(jié)】菜單課后作業(yè)典例探究·提知能自主落實·固基礎高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
2025-01-06 16:33
【總結(jié)】均值不等式的綜合應用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應用:11,lglg,(lglg),2lg(
2024-11-18 08:48
【總結(jié)】第一篇:2012高中數(shù)學單元訓練不等式的證明(二) 課時訓練37不等式的證明 (二)【說明】本試卷滿分100分,、選擇題(每小題6分,共42分) a2b 2+<x<1,a、b為正常數(shù),的最小值...
2024-11-05 06:07
【總結(jié)】第一篇: 一、教學重點 1、理解比較法、綜合法、分析法的基本思路。 2、會運用比較法、綜合法、分析法證明不等式。 比較法 (一)作差法 一開始我們就有定義:對于任意兩個實數(shù)有,也就是說...
2024-11-03 22:12
【總結(jié)】基本不等式的應用教學目標:一、知識與技能1.能利用基本不等式解決最值問題;2.會利用基本不等式解決與三角有關(guān)問題.二、過程與方法1.通過實例體會基本不等式在最值問題中的應用;2.通過實例體會總結(jié)基本不等式在應用中需要注意的問題.三、情感、態(tài)度與價值觀通過親歷解題的過程,
2024-12-05 10:13