【摘要】PK!宻燾?[Content_Types].xml?(?
2024-12-05 06:36
【摘要】復(fù)合函數(shù)的導(dǎo)數(shù)復(fù)習(xí)回顧基本初等函數(shù)的求導(dǎo)公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2025-07-25 22:48
【摘要】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時間掙到2萬元,乙用5個月時間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關(guān)于注水時間t的函數(shù),則下面兩個圖象哪一個可以表示上述函數(shù)?Ot/m
2024-11-17 15:20
【摘要】最大值、最小值問題(二)雙基達標(biāo)?限時20分鐘?1.將長度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯解析設(shè)一段長為x,則另一段為8-x,其中0x8.設(shè)y=x3+(8-x)3,則y′=3x2-
2024-12-03 00:13
【摘要】:)(00xxkyy???0已知函數(shù)y=f(x)在點x=x及其附近有定義00?叫做函數(shù)y=f(x)在x到x+x之間的平均變化率.00()()x0,fxxfxyxx?????????當(dāng)時比值'000)()()lim
2024-11-17 05:49
【摘要】1導(dǎo)數(shù)的幾何意義311..2?????????,.,,''的幾何意義是什么呢導(dǎo)數(shù)么那附近的變化情況在數(shù)反映了函處的瞬時變化率在表示函數(shù)導(dǎo)數(shù)我們知道0000xfxxxfxxxfxf??3P1P2P3P4PTTTTPP??
2024-11-18 01:21
【摘要】導(dǎo)數(shù)在實際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)解函數(shù)應(yīng)用題時,要注意四個步驟:1、閱讀理解,審清題意讀題時要做到逐字逐句,讀懂題中的文字敘述
【摘要】簡單復(fù)合函數(shù)的導(dǎo)數(shù)課時目標(biāo)能求形如f(ax+b)形式的復(fù)合函數(shù)的導(dǎo)數(shù).[來源:Z|xx|k.Com]復(fù)合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)).
2024-12-05 09:29
【摘要】第2課時微積分基本定理..1664年秋,牛頓開始研究微積分問題,他反復(fù)閱讀笛卡兒《幾何學(xué)》,對笛卡兒求切線的“圓法”產(chǎn)生了濃厚的興趣并試圖尋找更好的方法,以前,面積總是被看成是無限小不可分量之和,牛頓則從確定面積的變化率入手,通過反微分計算面積.牛頓不僅揭示了面積計算與求切線的互逆關(guān)系,而且十分
2024-12-05 06:35
【摘要】第3課時定積分的簡單應(yīng)用,并能利用積分公式表進行計算.,建立它的數(shù)學(xué)模型,并能利用積分公式表進行計算.,體會到微積分把不同背景的問題統(tǒng)一到一起的巨大作用和實用價值.實際生活中許多變量的變化是非均勻變化的,如非勻速直線運動在某時間段內(nèi)位移;變力使物體沿直線方向移動某位移區(qū)間段內(nèi)所做的功;非均勻
2024-11-19 20:36
【摘要】§計算導(dǎo)數(shù)學(xué)習(xí)目標(biāo)思維脈絡(luò)1.會用導(dǎo)數(shù)的定義求函數(shù)y=c,y=x,y=x2,y=1x的導(dǎo)數(shù).2.記住基本初等函數(shù)的求導(dǎo)公式.3.能利用求導(dǎo)公式求簡單函數(shù)的導(dǎo)數(shù).4.逐步深化對導(dǎo)函數(shù)與函數(shù)內(nèi)在聯(lián)系的認識.121.導(dǎo)函數(shù)
2024-11-18 13:32
【摘要】本課時欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.理解函數(shù)的平均變化率和瞬時變化率的概念.2.會求物體運動的平均速度并估計瞬時速度.【學(xué)法指導(dǎo)】從平均速度和瞬時速度的概念推廣到函數(shù)的平均變化率與瞬時變化率,用來刻畫事物變化的快慢,為導(dǎo)數(shù)的學(xué)習(xí)作準(zhǔn)備.本課時欄目開關(guān)
2024-11-17 17:04