【摘要】§幾個(gè)常用函數(shù)的導(dǎo)數(shù)教學(xué)目標(biāo):1.使學(xué)生應(yīng)用由定義求導(dǎo)數(shù)的三個(gè)步驟推導(dǎo)四種常見函數(shù)yc?、yx?、2yx?、1yx?的導(dǎo)數(shù)公式;2.掌握并能運(yùn)用這四個(gè)公式正確求函數(shù)的導(dǎo)數(shù).教學(xué)重點(diǎn):四種常見函數(shù)yc?、yx?、2yx?、1yx?的導(dǎo)數(shù)公式及應(yīng)用[教學(xué)難點(diǎn):四種常見函數(shù)
2024-12-02 10:24
【摘要】12?分的創(chuàng)立導(dǎo)致了微積期的研究數(shù)量的變化規(guī)律進(jìn)行長(zhǎng)我們可以對(duì)通過研究函數(shù)這些性質(zhì)常重要的或最小值等性質(zhì)是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時(shí)型化規(guī)律的重要數(shù)學(xué)模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會(huì)導(dǎo)數(shù)在研究函從中你的性質(zhì)我們運(yùn)用導(dǎo)數(shù)研究函數(shù)下面34?????
2024-11-18 15:24
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列說法正確的是().A.若f(x)≥f(x0),則f(x0)為f(x)的極小值B.若f(x)≤f(x0),是f(x0)為f(x)的極大值C.若f(x0)為f(x)的極大值,則f(x)≤f(x0)D.以上都不對(duì)答案D2.已知函數(shù)f(x)在(a,b)上可導(dǎo)
2024-12-03 00:14
【摘要】一輪復(fù)習(xí)學(xué)案§應(yīng)用(1)姓名☆復(fù)習(xí)目標(biāo):1.理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;2.了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點(diǎn)兩側(cè)異號(hào))。?基礎(chǔ)熱身:1.3()31fxaxx???對(duì)于?
2024-12-08 01:48
【摘要】12??????????????????.,.,,,,.,,.,,00000值在相應(yīng)區(qū)間上所有函數(shù)數(shù)于函大不小那么值點(diǎn)小的最大是函數(shù)如果哪個(gè)值最小哪個(gè)值最大上某個(gè)區(qū)間我們往往更關(guān)心函數(shù)在數(shù)性質(zhì)時(shí)函在解決實(shí)際問題或研究但是的值更小更大附近找不到比那么在值點(diǎn)小的極大
【摘要】1.微積分基本定理一、基礎(chǔ)過關(guān)1.若F′(x)=x2,則F(x)的解析式正確的是______.①F(x)=13x3②F(x)=x3③F(x)=13x3+1④F(x)=13x3+c(c為常數(shù))2.設(shè)f(x)=?????x+1?x≤1?,12x2?x1?,則?
2024-12-05 06:24
【摘要】§導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用一、基礎(chǔ)過關(guān)1.煉油廠某分廠將原油精煉為汽油,需對(duì)原油進(jìn)行冷卻和加熱,如果第x小時(shí),原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時(shí)變化率的最小值是________.2.設(shè)底為等邊三角形的直三棱柱的體積為V,那么其表面積最小時(shí)底面邊長(zhǎng)為_
【摘要】第1課時(shí)數(shù)學(xué)歸納法雙基達(dá)標(biāo)?限時(shí)20分鐘?1.用數(shù)學(xué)歸納法證明“2nn2+1對(duì)于n≥n0的自然數(shù)n都成立”時(shí),第一步證明中的起始值n0應(yīng)取________.解析當(dāng)n取1、2、3、4時(shí)2nn2+1不成立,當(dāng)n=5時(shí),25=3252+1=26,第一個(gè)能
2024-12-04 20:00
【摘要】1.函數(shù)的和、差、積、商的導(dǎo)數(shù)一、基礎(chǔ)過關(guān)1.下列結(jié)論不正確的是________.(填序號(hào))①若y=3,則y′=0;②若f(x)=3x+1,則f′(1)=3;③若y=-x+x,則y′=-12x+1;④若y=sinx+cosx,則y′=cosx+si
2024-12-05 06:25
【摘要】第2章推理與證明§合情推理與演繹推理2.合情推理(一)一、基礎(chǔ)過關(guān)1.?dāng)?shù)列5,9,17,33,x,…中的x等于________2.f(n)=1+12+13+…+1n(n∈N*),計(jì)算得f(2)=32,f(4)2,f(8)52,f(16)3,f(32)
【摘要】1.最大值與最小值一、基礎(chǔ)過關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是________,________.2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值是________.3.函數(shù)y=lnxx的最大值為________.4.函數(shù)f(x)=xex的最
【摘要】1.瞬時(shí)變化率——導(dǎo)數(shù)(二)一、基礎(chǔ)過關(guān)1.下列說法正確的是________(填序號(hào)).①若f′(x0)不存在,則曲線y=f(x)在點(diǎn)(x0,f(x0))處就沒有切線;②若曲線y=f(x)在點(diǎn)(x0,f(x0))處有切線,則f′(x0)必存在;③若f′(x0)不存在,則曲線y=f(