【摘要】簡單復合函數(shù)的導數(shù)課時目標能求形如f(ax+b)形式的復合函數(shù)的導數(shù).[來源:Z|xx|k.Com]復合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復合函數(shù),記作y=f(g(x)).
2024-12-09 09:29
【摘要】復合函數(shù)的導數(shù)復習回顧基本初等函數(shù)的求導公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2025-07-28 22:48
【摘要】§導數(shù)的運算常見函數(shù)的導數(shù)課時目標,進一步理解運用概念求導數(shù)的方法.見函數(shù)的導數(shù)公式..1.幾個常用函數(shù)的導數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′
【摘要】1.2.3簡單復合函數(shù)的導數(shù)【學習要求】1.了解復合函數(shù)的概念,掌握復合函數(shù)的求導法則.2.能夠利用復合函數(shù)的求導法則,并結合已經(jīng)學過的公式、法則進行一些復合函數(shù)的求導(僅限于形如f(ax+b)的導數(shù)).【學法指導】復合函數(shù)的求導將復雜的問題簡單化,體現(xiàn)了轉化思想;學習中要通過中間變量的引入理解
2024-11-21 23:13
【摘要】§導數(shù)的運算§常見函數(shù)的導數(shù)目的要求:(1)了解求函數(shù)的導數(shù)的流程圖,會求函數(shù)的導函數(shù)(2)掌握基本初等函數(shù)的運算法則教學內容一.回顧函數(shù)在某點處的導數(shù)、導函數(shù)思考:求函數(shù)導函數(shù)的流程圖新授;求下列函數(shù)的導數(shù)(1)ykx
2024-11-24 00:29
【摘要】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時間掙到2萬元,乙用5個月時間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關于注水時間t的函數(shù),則下面兩個圖象哪一個可以表示上述函數(shù)?Ot/m
2024-11-21 15:20
【摘要】1.簡單復合函數(shù)的導數(shù)一、基礎過關1.下列函數(shù)是復合函數(shù)的是________.(填序號)①y=-x3-1x+1②y=cos(x+π4)③y=1lnx④y=(2x+3)42.函數(shù)y=1?3x-1?2的導數(shù)y′=________.3.函數(shù)y=x2cos2x的導數(shù)y′=_______
2024-12-09 06:24
【摘要】極大值與極小值課時目標(小)值的概念.,了解函數(shù)在某點取得極值的必要條件和充分條件.、極小值.1.若函數(shù)y=f(x)在點x=a的函數(shù)值f(a)比它在點x=a附近其他點的函數(shù)值都小,f′(a)=0,而且在點x=a附近的左側________,右側________.類似地,函數(shù)y=f(
【摘要】《簡單復合函數(shù)的導數(shù)》同步檢測一、基礎過關1.下列函數(shù)是復合函數(shù)的是________.(填序號)①y=-x3-1x+1②y=cos(x+π4)③y=1lnx④y=(2x+3)4[來源^&:*@中教網(wǎng)%]2.函數(shù)y=1?3x-1?2的導數(shù)y′=________.[來源:學科網(wǎng)ZXX
2024-12-11 20:50
【摘要】間接證明雙基達標?限時20分鐘?1.否定“自然數(shù)a、b、c中恰有一個偶數(shù)”時正確的反設為____________________.解析恰有一個偶數(shù)的否定有兩種情況,其一是無偶數(shù)(全為奇數(shù)),其二是至少有兩個偶數(shù).答案a、b、c中或都是奇數(shù)或至少有兩個偶數(shù)2.用反證法證明一個命題時,下列說法正確的
2024-12-08 20:00
【摘要】DEABC導數(shù)在實際生活中的應用同步練習1.一點沿直線運動,如果由始點起經(jīng)過t秒后的距離為43215243sttt???,那么速度為零的時刻是()A.1秒末B.0秒C.4秒末D.0,1,4秒末2.某公司在
【摘要】圖1導數(shù)在實際生活的實際應用同步練習1.一個膨脹中的球形氣球,其體積的膨脹章恒為/s,則當其半徑增至m時,半徑的增長率是________.2.將長為a的鐵絲剪成兩段,各圍成長與寬之比為2∶1及3∶2的矩形,那么這兩個矩形面積和的最小值為.3.如圖1,將邊
【摘要】§導數(shù)在研究函數(shù)中的應用1.單調性課時目標掌握導數(shù)與函數(shù)單調性之間的關系,會利用導數(shù)研究函數(shù)的單調性,會求不超過三次的多項式函數(shù)的單調區(qū)間.1.導函數(shù)的符號與函數(shù)的單調性的關系:如果在某個區(qū)間內,函數(shù)y=f(x)的導數(shù)________,則函數(shù)y=f(x)這個區(qū)間上是增函數(shù);如果在某個區(qū)
【摘要】§5簡單復合函數(shù)的求導法則雙基達標?限時20分鐘?1.已知f(x)=ln(2x),則f′(x)().A.12xC.1x·ln22x解析f(x)=ln(2x)由f(u)=lnu和u=2x復合而成.答案B2.設f(x)=x3,則f(a-bx)的
2024-12-07 00:14
【摘要】第2課時課時目標.度及瞬時變化率定義求物體在某一時刻的瞬時速度及瞬時變化率.,掌握求函數(shù)在一點處的導數(shù)的方法.數(shù)的概念,會求一個函數(shù)的導數(shù).1.瞬時速度的概念作變速直線運動的物體在不同時刻的速度是不同的,把物體在某一時刻的速度叫____________.用數(shù)學語言描述為:如果當Δt無限趨近于