【摘要】§導數(shù)在研究函數(shù)中的應用1.單調(diào)性課時目標掌握導數(shù)與函數(shù)單調(diào)性之間的關系,會利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.1.導函數(shù)的符號與函數(shù)的單調(diào)性的關系:如果在某個區(qū)間內(nèi),函數(shù)y=f(x)的導數(shù)________,則函數(shù)y=f(x)這個區(qū)間上是增函數(shù);如果在某個區(qū)
2024-12-09 09:29
【摘要】極大值與極小值課時目標(小)值的概念.,了解函數(shù)在某點取得極值的必要條件和充分條件.、極小值.1.若函數(shù)y=f(x)在點x=a的函數(shù)值f(a)比它在點x=a附近其他點的函數(shù)值都小,f′(a)=0,而且在點x=a附近的左側________,右側________.類似地,函數(shù)y=f(
【摘要】本課時欄目開關填一填研一研練一練1.3.1單調(diào)性【學習要求】1.結合實例,直觀探索并掌握函數(shù)的單調(diào)性與導數(shù)的關系.2.能利用導數(shù)研究函數(shù)的單調(diào)性,并能夠利用單調(diào)性證明一些簡單的不等式.3.會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)一般不超過三次).【學法指導】結合
2024-11-22 08:08
【摘要】瞬時變化率——導數(shù)第1課時課時目標..1.導數(shù)的幾何意義:函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)的幾何意義是:__________________________.2.利用導數(shù)的幾何意義求曲線的切線方程的步驟:(1)求出函數(shù)y=f(x)在點x0處的導數(shù)f′(x0);(2)根
【摘要】第2課時課時目標.度及瞬時變化率定義求物體在某一時刻的瞬時速度及瞬時變化率.,掌握求函數(shù)在一點處的導數(shù)的方法.數(shù)的概念,會求一個函數(shù)的導數(shù).1.瞬時速度的概念作變速直線運動的物體在不同時刻的速度是不同的,把物體在某一時刻的速度叫____________.用數(shù)學語言描述為:如果當Δt無限趨近于
【摘要】2020/12/2511)如果在某區(qū)間上f′(x)0,那么f(x)為該區(qū)間上的增函數(shù),2)如果在某區(qū)間上f′(x)0,那么f(x)為該區(qū)間上的減函數(shù)。一般地,設函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導數(shù)與函數(shù)的單調(diào)性的關系
2024-11-22 08:46
【摘要】極值點教學目的:、極小值的概念.、極小值的方法來求函數(shù)的極值.教學重點:極大、極小值的概念和判別方法,以及求可導函數(shù)的極值的步驟.教學難點:對極大、極小值概念的理解及求可導函數(shù)的極值的步驟授課類型:新授課課時安排:1課時教具:多媒體、實物投影儀內(nèi)容分析:對極大、極小值概念的理
2024-11-24 00:26
【摘要】§定積分1.曲邊梯形的面積課時目標通過求曲邊梯形的面積和變速直線運動的路程,了解定積分概念建立的背景,借助于幾何直觀體會定積分的基本思想.1.曲邊梯形:由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的圖形稱為曲邊梯形.2.計算曲邊梯形面積的方法:把區(qū)間[
2024-12-09 09:28
【摘要】DEABC導數(shù)在實際生活中的應用同步練習1.一點沿直線運動,如果由始點起經(jīng)過t秒后的距離為43215243sttt???,那么速度為零的時刻是()A.1秒末B.0秒C.4秒末D.0,1,4秒末2.某公司在
【摘要】簡單復合函數(shù)的導數(shù)課時目標能求形如f(ax+b)形式的復合函數(shù)的導數(shù).[來源:Z|xx|k.Com]復合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復合函數(shù),記作y=f(g(x)).
【摘要】定積分課時目標..分.1.定積分的概念:一般地,設函數(shù)f(x)在區(qū)間[a,b]上有意義,將區(qū)間[a,b]等分成n個小區(qū)間,每個小區(qū)間長度為Δx(Δx=b-an),在每個小區(qū)間上取一點,依次為x1,x2,…,xn,作和.Sn=f(x1)Δx+f(x2)Δx+…+
2024-12-09 03:08
【摘要】§導數(shù)的運算常見函數(shù)的導數(shù)課時目標,進一步理解運用概念求導數(shù)的方法.見函數(shù)的導數(shù)公式..1.幾個常用函數(shù)的導數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′
【摘要】導數(shù)在研究函數(shù)中的應用單調(diào)性教學目的:;.教學重點:利用導數(shù)判斷函數(shù)單調(diào)性.教學難點:利用導數(shù)判斷函數(shù)單調(diào)性.授課類型:新授課課時安排:1課時.教具:多媒體、實物投影儀.內(nèi)容分析:以前,我們用定義來判斷函數(shù)的單調(diào)性.對于任意的兩個數(shù)x1,x2∈I,且當
2024-12-09 09:20
【摘要】微積分基本定理課時目標.積分.微積分基本定理對于被積函數(shù)f(x),如果F′(x)=f(x),那么?baf(x)dx=__________,即?baF′(x)dx=__________.一、填空題1.22(1cos)xdx?????=________.2.若?10
2024-12-08 20:01
【摘要】第三章導數(shù)及其應用第12課時導數(shù)在研究函數(shù)中的應用教學目標:;能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間;、極小值;會用導數(shù)求函數(shù)的極大值、極小值;、最小值.教學重點:導數(shù)在研究函數(shù)中的應用教學難點:導數(shù)在研究函數(shù)中的應用教學過程:Ⅰ.回顧復習Ⅱ.基本訓練
2024-11-23 17:30