【摘要】瞬時(shí)變化率——導(dǎo)數(shù)第1課時(shí)課時(shí)目標(biāo)..1.導(dǎo)數(shù)的幾何意義:函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)的幾何意義是:__________________________.2.利用導(dǎo)數(shù)的幾何意義求曲線的切線方程的步驟:(1)求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0);(2)根
2024-12-09 09:29
【摘要】第2課時(shí)課時(shí)目標(biāo).度及瞬時(shí)變化率定義求物體在某一時(shí)刻的瞬時(shí)速度及瞬時(shí)變化率.,掌握求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的方法.數(shù)的概念,會(huì)求一個(gè)函數(shù)的導(dǎo)數(shù).1.瞬時(shí)速度的概念作變速直線運(yùn)動(dòng)的物體在不同時(shí)刻的速度是不同的,把物體在某一時(shí)刻的速度叫____________.用數(shù)學(xué)語(yǔ)言描述為:如果當(dāng)Δt無(wú)限趨近于
【摘要】課題:瞬時(shí)變化率??導(dǎo)數(shù)教學(xué)目標(biāo):(1)什么是曲線上一點(diǎn)處的切線,如何作曲線上一點(diǎn)處的切線?如何求曲線上一點(diǎn)處的曲線?注意曲線未必只與曲線有一個(gè)交點(diǎn)。(2)了解以曲代直、無(wú)限逼近的思想和方法(3)瞬時(shí)速度與瞬時(shí)加速度的定義及求解方法。(4)導(dǎo)數(shù)的概念,其產(chǎn)生的背景,如何求函數(shù)在某點(diǎn)處的
2024-11-23 21:26
【摘要】導(dǎo)數(shù)及其應(yīng)用第一章導(dǎo)數(shù)第2課時(shí)瞬時(shí)變化率與導(dǎo)數(shù)第一章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)中國(guó)高速鐵路,常被簡(jiǎn)稱為“中國(guó)高鐵”.中國(guó)是世界上高速鐵路發(fā)展最快、系統(tǒng)技術(shù)最全、集成能力最強(qiáng)、運(yùn)營(yíng)里程最長(zhǎng)、運(yùn)營(yíng)速度最快、在建規(guī)模最大的國(guó)家.同
2024-11-22 01:21
【摘要】作業(yè):1.已知曲線214yx?和這條曲線上的一點(diǎn)1(1,),4PQ是曲線上點(diǎn)P附近的一點(diǎn),則點(diǎn)Q的坐標(biāo)為()A.2(1,())xx???B.21(,())4xx??C.21(1,(1))4xx????D.(21,(1)4xx???
2024-12-09 03:08
【摘要】§定積分1.曲邊梯形的面積課時(shí)目標(biāo)通過(guò)求曲邊梯形的面積和變速直線運(yùn)動(dòng)的路程,了解定積分概念建立的背景,借助于幾何直觀體會(huì)定積分的基本思想.1.曲邊梯形:由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的圖形稱為曲邊梯形.2.計(jì)算曲邊梯形面積的方法:把區(qū)間[
2024-12-09 09:28
【摘要】1.1.2瞬時(shí)變化率——導(dǎo)數(shù)(一)【學(xué)習(xí)要求】1.理解曲線的切線的概念,會(huì)用逼近的思想求切線斜率.2.會(huì)求物體運(yùn)動(dòng)的瞬時(shí)速度與瞬時(shí)加速度.【學(xué)法指導(dǎo)】可以利用曲線的割線逼近切線,用物體運(yùn)動(dòng)的平均速度逼近瞬時(shí)速度,這就是數(shù)學(xué)上的“無(wú)限逼近”,為函數(shù)的導(dǎo)數(shù)作準(zhǔn)備.(一)本課時(shí)欄
2025-07-27 04:23
【摘要】定積分課時(shí)目標(biāo)..分.1.定積分的概念:一般地,設(shè)函數(shù)f(x)在區(qū)間[a,b]上有意義,將區(qū)間[a,b]等分成n個(gè)小區(qū)間,每個(gè)小區(qū)間長(zhǎng)度為Δx(Δx=b-an),在每個(gè)小區(qū)間上取一點(diǎn),依次為x1,x2,…,xn,作和.Sn=f(x1)Δx+f(x2)Δx+…+
【摘要】§導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.單調(diào)性課時(shí)目標(biāo)掌握導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系,會(huì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過(guò)三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間.1.導(dǎo)函數(shù)的符號(hào)與函數(shù)的單調(diào)性的關(guān)系:如果在某個(gè)區(qū)間內(nèi),函數(shù)y=f(x)的導(dǎo)數(shù)________,則函數(shù)y=f(x)這個(gè)區(qū)間上是增函數(shù);如果在某個(gè)區(qū)
【摘要】1.1.2瞬時(shí)變化率——導(dǎo)數(shù)(二)【學(xué)習(xí)要求】1.理解函數(shù)的瞬時(shí)變化率——導(dǎo)數(shù)的準(zhǔn)確定義和極限形式的意義,并掌握導(dǎo)數(shù)的幾何意義.2.理解導(dǎo)函數(shù)的概念,了解導(dǎo)數(shù)的物理意義和實(shí)際意義.【學(xué)法指導(dǎo)】導(dǎo)數(shù)就是瞬時(shí)變化率,理解導(dǎo)數(shù)概念可以結(jié)合曲線切線的斜率,結(jié)合瞬時(shí)速度,瞬時(shí)加速度;函數(shù)f(x)
2024-11-21 17:03
【摘要】極大值與極小值課時(shí)目標(biāo)(小)值的概念.,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件.、極小值.1.若函數(shù)y=f(x)在點(diǎn)x=a的函數(shù)值f(a)比它在點(diǎn)x=a附近其他點(diǎn)的函數(shù)值都小,f′(a)=0,而且在點(diǎn)x=a附近的左側(cè)________,右側(cè)________.類似地,函數(shù)y=f(
【摘要】微積分基本定理課時(shí)目標(biāo).積分.微積分基本定理對(duì)于被積函數(shù)f(x),如果F′(x)=f(x),那么?baf(x)dx=__________,即?baF′(x)dx=__________.一、填空題1.22(1cos)xdx?????=________.2.若?10
2024-12-08 20:01
【摘要】§導(dǎo)數(shù)的運(yùn)算常見(jiàn)函數(shù)的導(dǎo)數(shù)課時(shí)目標(biāo),進(jìn)一步理解運(yùn)用概念求導(dǎo)數(shù)的方法.見(jiàn)函數(shù)的導(dǎo)數(shù)公式..1.幾個(gè)常用函數(shù)的導(dǎo)數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′
【摘要】§變化率問(wèn)題教學(xué)目標(biāo)1.理解平均變化率的概念;2.了解平均變化率的幾何意義;3.會(huì)求函數(shù)在某點(diǎn)處附近的平均變化率教學(xué)重點(diǎn):平均變化率的概念、函數(shù)在某點(diǎn)處附近的平均變化率;教學(xué)難點(diǎn):平均變化率的概念.教學(xué)過(guò)程:一.創(chuàng)設(shè)情景[為了描述現(xiàn)實(shí)世界中運(yùn)動(dòng)、過(guò)程等變化著的現(xiàn)象,在數(shù)學(xué)中引入了函數(shù),隨著
2024-12-12 01:49