【摘要】導(dǎo)數(shù)在實際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)解函數(shù)應(yīng)用題時,要注意四個步驟:1、閱讀理解,審清題意讀題時要做到逐字逐句,讀懂題中的文字敘述
2025-11-08 15:20
【摘要】§3計算導(dǎo)數(shù)雙基達標?限時20分鐘?1.曲線y=xn在x=2處的導(dǎo)數(shù)為12,則n等于().A.1B.2C.3D.4解析∵y′=n·xn-1,∴y′|x=2=n·2n-1=12.∴n=3.答案C2.若函數(shù)f(x)=3
2025-11-24 00:14
【摘要】1.1.2瞬時變化率——導(dǎo)數(shù)(二)【學(xué)習(xí)要求】1.理解函數(shù)的瞬時變化率——導(dǎo)數(shù)的準確定義和極限形式的意義,并掌握導(dǎo)數(shù)的幾何意義.2.理解導(dǎo)函數(shù)的概念,了解導(dǎo)數(shù)的物理意義和實際意義.【學(xué)法指導(dǎo)】導(dǎo)數(shù)就是瞬時變化率,理解導(dǎo)數(shù)概念可以結(jié)合曲線切線的斜率,結(jié)合瞬時速度,瞬時加速度;函數(shù)f(x)
2025-11-08 17:03
【摘要】(一)一、教學(xué)目標:了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.二、教學(xué)重點:利用導(dǎo)數(shù)判斷一個函數(shù)在其定義區(qū)間內(nèi)的單調(diào)性教學(xué)難點:判斷復(fù)合函數(shù)的單調(diào)區(qū)間及應(yīng)用;利用導(dǎo)數(shù)的符號判斷函數(shù)的單調(diào)性.三、教學(xué)過程(一)復(fù)習(xí)引入1.增函數(shù)、減函數(shù)的定義一般地,設(shè)函數(shù)f(x)的定義域為I:如果對于屬于定義域
2025-11-11 03:14
【摘要】12???,??th,.,at,,規(guī)律導(dǎo)數(shù)的符號有什么變化地相應(yīng)特點此點附近的圖象有什么是多少呢在此點的導(dǎo)數(shù)函數(shù)那么距水面的高度最大高臺跳水運動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'??圖.,值的過程形象解釋
2025-11-09 15:24
【摘要】§定積分目的要求:(1)定積分的定義(2)利用定積分的定義求函數(shù)的積分,掌握步驟(3)定積分的幾何意義(4)會用定積分表示陰影部分的面積重點難點:定積分的定義是本節(jié)的重點,定積分的幾何意義的應(yīng)用是本節(jié)的難點。教學(xué)內(nèi)容:定積分:一般地,設(shè)函數(shù)()fx在區(qū)間[
2025-11-10 21:26
【摘要】§定積分1.曲邊梯形的面積課時目標通過求曲邊梯形的面積和變速直線運動的路程,了解定積分概念建立的背景,借助于幾何直觀體會定積分的基本思想.1.曲邊梯形:由直線x=a,x=b(a≠b),y=0和曲線y=f(x)所圍成的圖形稱為曲邊梯形.2.計算曲邊梯形面積的方法:把區(qū)間[
2025-11-26 09:28
【摘要】微積分基本定理課時目標.積分.微積分基本定理對于被積函數(shù)f(x),如果F′(x)=f(x),那么?baf(x)dx=__________,即?baF′(x)dx=__________.一、填空題1.22(1cos)xdx?????=________.2.若?10
2025-11-25 20:01
【摘要】1§函數(shù)的極值與導(dǎo)數(shù)學(xué)習(xí)目標、極小值,最大值和最小值的概念;、極小值的方法來求函數(shù)的極值;.和步驟.預(yù)習(xí)與反饋(預(yù)習(xí)教材P26~P31,找出疑惑之處)復(fù)習(xí)1:設(shè)函數(shù)y=f(x)在某個區(qū)間內(nèi)有導(dǎo)數(shù),如果在這個區(qū)間內(nèi)0y??,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)為函
【摘要】演繹推理推理案例賞析雙基達標?限時20分鐘?1.“因?qū)?shù)函數(shù)y=logax是增函數(shù)(大前提),而y=log13x是對數(shù)函數(shù)(小前提),所以y=log13x是增函數(shù)(結(jié)論).”上面推理的錯誤是________.答案大前提錯導(dǎo)致結(jié)論錯2.下面幾種推理過程是演繹推理的是________
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第2章5簡單復(fù)合函數(shù)的求導(dǎo)法則課時作業(yè)北師大版選修2-2一、選擇題1.函數(shù)y=xln(2x+5)的導(dǎo)數(shù)為()A.ln(2x+5)-x2x+5B.ln(2x+5)+2x2x+5C.2xln(2x+5)D.x2x+5[答案]B[解析]
2025-11-26 06:27
【摘要】第2課時數(shù)學(xué)歸納法的應(yīng)用雙基達標?限時20分鐘?1.用數(shù)學(xué)歸納法證明an+bn2≥????a+b2n(a,b是非負實數(shù),n∈N+)時,假設(shè)n=k命題成立之后,證明n=k+1命題也成立的關(guān)鍵是__________________.解析要想辦法出現(xiàn)ak+1+
2025-11-25 20:00
【摘要】§幾個常用函數(shù)的導(dǎo)數(shù)教學(xué)目標:1.使學(xué)生應(yīng)用由定義求導(dǎo)數(shù)的三個步驟推導(dǎo)四種常見函數(shù)yc?、yx?、2yx?、1yx?的導(dǎo)數(shù)公式;2.掌握并能運用這四個公式正確求函數(shù)的導(dǎo)數(shù).教學(xué)重點:四種常見函數(shù)yc?、yx?、2yx?、1yx?的導(dǎo)數(shù)公式及應(yīng)用[教學(xué)難點:四種常見函數(shù)
2025-11-23 10:24
【摘要】12?分的創(chuàng)立導(dǎo)致了微積期的研究數(shù)量的變化規(guī)律進行長我們可以對通過研究函數(shù)這些性質(zhì)常重要的或最小值等性質(zhì)是非與慢以及函數(shù)的最大值減的快了解函數(shù)的增與減、增研究函數(shù)時型化規(guī)律的重要數(shù)學(xué)模函數(shù)是描述客觀世界變,,.,..,,數(shù)中的作用可以體會導(dǎo)數(shù)在研究函從中你的性質(zhì)我們運用導(dǎo)數(shù)研究函數(shù)下面34?????
【摘要】雙基達標?限時20分鐘?1.下列說法正確的是().A.若f(x)≥f(x0),則f(x0)為f(x)的極小值B.若f(x)≤f(x0),是f(x0)為f(x)的極大值C.若f(x0)為f(x)的極大值,則f(x)≤f(x0)D.以上都不對答案D2.已知函數(shù)f(x)在(a,b)上可導(dǎo)