【總結】1.5.3微積分基本定理【學習要求】1.直觀了解并掌握微積分基本定理的含義.2.會利用微積分基本定理求函數(shù)的積分.【學法指導】通過探究變速直線運動物體的速度與位移的關系,直觀了解微積分基本定理的含義.微積分基本定理不僅揭示了導數(shù)和定積分之間的內在聯(lián)系,而且還提供了計算定積分的一種有效方法.本
2024-11-17 23:13
【總結】本課時欄目開關填一填研一研練一練1.3.1單調性【學習要求】1.結合實例,直觀探索并掌握函數(shù)的單調性與導數(shù)的關系.2.能利用導數(shù)研究函數(shù)的單調性,并能夠利用單調性證明一些簡單的不等式.3.會求函數(shù)的單調區(qū)間(其中多項式函數(shù)一般不超過三次).【學法指導】結合
2024-11-18 08:08
【總結】導數(shù)在研究函數(shù)中的應用單調性教學目的:;.教學重點:利用導數(shù)判斷函數(shù)單調性.教學難點:利用導數(shù)判斷函數(shù)單調性.授課類型:新授課課時安排:1課時.教具:多媒體、實物投影儀.內容分析:以前,我們用定義來判斷函數(shù)的單調性.對于任意的兩個數(shù)x1,x2∈I,且當
2024-12-05 09:20
【總結】本課時欄目開關填一填研一研練一練1.1.1平均變化率【學習要求】1.理解并掌握平均變化率的概念.2.會求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說明生活中的實際問題.【學法指導】平均變化率可以刻畫函數(shù)值在某個范圍內變化的快慢程度,理解
【總結】定積分課時目標..分.1.定積分的概念:一般地,設函數(shù)f(x)在區(qū)間[a,b]上有意義,將區(qū)間[a,b]等分成n個小區(qū)間,每個小區(qū)間長度為Δx(Δx=b-an),在每個小區(qū)間上取一點,依次為x1,x2,…,xn,作和.Sn=f(x1)Δx+f(x2)Δx+…+
2024-12-05 03:08
【總結】1.3.2函數(shù)的極值與導數(shù)(1)一、教學目標:理解函數(shù)的極大值、極小值、極值點的意義.掌握函數(shù)極值的判別方法.進一步體驗導數(shù)的作用.二、教學重點:求函數(shù)的極值.教學難點:嚴格套用求極值的步驟.三、教學過程:(一)函數(shù)的極值與導數(shù)的關系1、觀察下圖中的曲線a點的函數(shù)值f(a)比它臨近點的函數(shù)值都大.b點的函數(shù)值f(
2024-11-19 22:43
【總結】幾個常用函數(shù)的導數(shù)一、復習,過曲線某點的切線的斜率的精確描述與求值;物理學中,物體運動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質相同的數(shù)學表達式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導數(shù),導數(shù)源于實踐,又服務于實踐.:(1)()();yfx
2024-11-17 17:34
【總結】"福建省長樂第一中學2021高中數(shù)學第一章《復合函數(shù)的求導法則》教案新人教A版選修2-2"教學目標理解并掌握復合函數(shù)的求導法則.教學重點復合函數(shù)的求導方法:復合函數(shù)對自變量的導數(shù),等于已知函數(shù)對中間變量的導數(shù)乘以中間變量對自變量的導數(shù)之積.教學難點正確分解復合函數(shù)的復合過程,做到不漏,不
2024-12-05 06:42
【總結】第3章數(shù)系的擴充與復數(shù)的引入§數(shù)系的擴充課時目標i的必要性,了解數(shù)集的擴充過程.中由實數(shù)集擴展到復數(shù)集出現(xiàn)的一些基本概念.,理解復數(shù)相等的充要條件.1.復數(shù)的有關概念(1)虛數(shù)單位把平方等于-1的數(shù)用符號i表示,規(guī)定__________,i叫作虛數(shù)單位.(2
2024-12-05 09:28
【總結】§2導數(shù)的概念及其幾何意義導數(shù)的概念雙基達標?限時20分鐘?1.函數(shù)f(x)在x0處可導,則limh→0f?x0+h?-f?x0?h().A.與x0、h都有關B.僅與x0有關,而與h無關C.僅與h有關,而與x0無關D.與x0、h均無關答案B
2024-12-03 00:14
【總結】1導數(shù)的運算.2常數(shù)函數(shù)與冪函數(shù)的導數(shù)3???,,.,,如何求它的導數(shù)呢數(shù)對于函那么度體在某一時刻的瞬時速物理意義是運動物點處的切線的斜率在某導數(shù)的幾何意義是曲線我們知道xfy???.,,,個定值所趨于的那時趨近于就是求出當?shù)膶?shù)求函數(shù)根據(jù)函數(shù)的定義xyxxfy?
2024-11-18 01:21
【總結】§數(shù)學歸納法課時目標.2.能用數(shù)學歸納法證明一些簡單的數(shù)學命題.握數(shù)學歸納法的實質及與歸納,猜想的關系..1.數(shù)學歸納法公理對于某些________________的數(shù)學命題,可以用數(shù)學歸納法證明.2.證明步驟對于某些與正整數(shù)有關的數(shù)學命題,如果(1)當n________
【總結】導數(shù)在實際生活中的應用新課引入:導數(shù)在實際生活中有著廣泛的應用,利用導數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)解函數(shù)應用題時,要注意四個步驟:1、閱讀理解,審清題意讀題時要做到逐字逐句,讀懂題中的文字敘述
2024-11-17 15:20
【總結】§3計算導數(shù)雙基達標?限時20分鐘?1.曲線y=xn在x=2處的導數(shù)為12,則n等于().A.1B.2C.3D.4解析∵y′=n·xn-1,∴y′|x=2=n·2n-1=12.∴n=3.答案C2.若函數(shù)f(x)=3
【總結】1.1.2瞬時變化率——導數(shù)(二)【學習要求】1.理解函數(shù)的瞬時變化率——導數(shù)的準確定義和極限形式的意義,并掌握導數(shù)的幾何意義.2.理解導函數(shù)的概念,了解導數(shù)的物理意義和實際意義.【學法指導】導數(shù)就是瞬時變化率,理解導數(shù)概念可以結合曲線切線的斜率,結合瞬時速度,瞬時加速度;函數(shù)f(x)
2024-11-17 17:03