【摘要】一輪復(fù)習(xí)學(xué)案§應(yīng)用(1)姓名☆復(fù)習(xí)目標(biāo):1.理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;2.了解可導(dǎo)函數(shù)在某點取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點兩側(cè)異號)。?基礎(chǔ)熱身:1.3()31fxaxx???對于?
2024-12-08 01:48
【摘要】12??????????????????.,.,,,,.,,.,,00000值在相應(yīng)區(qū)間上所有函數(shù)數(shù)于函大不小那么值點小的最大是函數(shù)如果哪個值最小哪個值最大上某個區(qū)間我們往往更關(guān)心函數(shù)在數(shù)性質(zhì)時函在解決實際問題或研究但是的值更小更大附近找不到比那么在值點小的極大
2024-11-18 15:24
【摘要】1.微積分基本定理一、基礎(chǔ)過關(guān)1.若F′(x)=x2,則F(x)的解析式正確的是______.①F(x)=13x3②F(x)=x3③F(x)=13x3+1④F(x)=13x3+c(c為常數(shù))2.設(shè)f(x)=?????x+1?x≤1?,12x2?x1?,則?
2024-12-05 06:24
【摘要】§導(dǎo)數(shù)在實際生活中的應(yīng)用一、基礎(chǔ)過關(guān)1.煉油廠某分廠將原油精煉為汽油,需對原油進行冷卻和加熱,如果第x小時,原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時變化率的最小值是________.2.設(shè)底為等邊三角形的直三棱柱的體積為V,那么其表面積最小時底面邊長為_
【摘要】第1課時數(shù)學(xué)歸納法雙基達標(biāo)?限時20分鐘?1.用數(shù)學(xué)歸納法證明“2nn2+1對于n≥n0的自然數(shù)n都成立”時,第一步證明中的起始值n0應(yīng)取________.解析當(dāng)n取1、2、3、4時2nn2+1不成立,當(dāng)n=5時,25=3252+1=26,第一個能
2024-12-04 20:00
【摘要】1.函數(shù)的和、差、積、商的導(dǎo)數(shù)一、基礎(chǔ)過關(guān)1.下列結(jié)論不正確的是________.(填序號)①若y=3,則y′=0;②若f(x)=3x+1,則f′(1)=3;③若y=-x+x,則y′=-12x+1;④若y=sinx+cosx,則y′=cosx+si
2024-12-05 06:25
【摘要】第2章推理與證明§合情推理與演繹推理2.合情推理(一)一、基礎(chǔ)過關(guān)1.?dāng)?shù)列5,9,17,33,x,…中的x等于________2.f(n)=1+12+13+…+1n(n∈N*),計算得f(2)=32,f(4)2,f(8)52,f(16)3,f(32)
【摘要】1.最大值與最小值一、基礎(chǔ)過關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是________,________.2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值是________.3.函數(shù)y=lnxx的最大值為________.4.函數(shù)f(x)=xex的最
【摘要】1.瞬時變化率——導(dǎo)數(shù)(二)一、基礎(chǔ)過關(guān)1.下列說法正確的是________(填序號).①若f′(x0)不存在,則曲線y=f(x)在點(x0,f(x0))處就沒有切線;②若曲線y=f(x)在點(x0,f(x0))處有切線,則f′(x0)必存在;③若f′(x0)不存在,則曲線y=f(