freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

小波變換課件h5雙正交小波(完整版)

2025-06-30 23:53上一頁面

下一頁面
  

【正文】 eldens重構算法 作業(yè) ? 利用 Sweldens算法實現(xiàn)信號的分解與重構 ? 可參考第四章示例程序的信號和模式給出圖形結果 ? 使用 haar小波或 lazy小波的一次提升 整型小波變換 ? 提升方案為擴展小波變換的應用領域提供了更多的靈活性。 ? end ? y= collect( m0) 。 ? t(1) = sym(1) 。%syms是定義符號變量 ; sym則是將字符或者數(shù)字轉換為字符。 證明:利用雙正交基本條件 }~{ kh}{ khnp 10 ?p:n k k nkp h h ?? ? 和 的長度 和 之間的關系 ( 1) ? 兩者長度均為奇數(shù),并且長度相差2的奇數(shù)倍,因而兩者不可能等長。 ? 如果 可以表示為 式中 α和 β為常數(shù),那么稱為 具有 線性相位特性 )()()( ???? jeHH ?()H ? ()??()??????? ??)(()?? ? 輸出信號的相位特性,除了常數(shù) β外,與延時為 α的輸入信號 的相位特性完全一致 h f(x) g(x) ?? ( ) ( ) ( )?( ) ( )?( ) ( ( ) )jjjg H fH e e fH e f x? ???? ? ??????????()fx ??當濾波器具有線性相位特性時 , 輸出信號將不產(chǎn)生相位畸變。j j j jV V W W?? 。 ? 小波 和 是一對反對稱雙正交小波。 ? n2= floor(n/2) 。 ? for j= 1: k ? m0= m0+ t( j) * ( ( z^( 1/ 2) z^( 1/ 2) ) / ( 2* i) ) ^( 2* ( j 1) ) 。 ? 定理 對于一對給定的雙正交尺度函數(shù) 和 ,其相應的二尺度系數(shù)序列為 和 ,那么所有滿足如下條件 的序列 將與序列 也滿足雙正交關系。 [ 2 1 ]jjx a x a? ? ?? ? ?( 0 ) ( 0 ) ( 0 ),11 ()2j j j jd d a a ?? ? ?2? ?1[ 2 1 ] [ 2 1 ] [ 2 ] [ 2 2 ]2y x x x? ? ? ? ? ?? ?1[ 2 ] [ 2 ] [ 2 1 ] [ 2 1 ]4y x y y? ? ? ? ?細節(jié)序列更新 近似序列更新 ? 重構(同址運算) ? 整型提升 (3,5)小波變換 ? ?1[ 2 ] [ 2 ] [ 2 1 ] [ 2 1 ]4x l y l y l y l? ? ? ? ?? ?1[ 2 1 ] [ 2 1 ] [ 2 ] [ 2 2 ]2x l y l x l x l? ? ? ? ? ?[ 2 ] [ 2 2 ][ 2 1 ] [ 2 1 ]2x l x ly l x l ????? ? ? ?????[ 2 1 ] [ 2 1 ] 2[ 2 ] [ 2 ]4y l y ly l x l ? ? ? ?????????[ 2 1 ] [ 2 1 ] 2[ 2 ] [ 2 ]4y l y lx l y l ? ? ? ?????????[ 2 ] [ 2 2 ][ 2 1 ] [ 2 1 ]2x l x lx l y l ????? ? ? ????? 。 ? )0(~?}{h }~{ )0(h}~{h( 0 )( ) ( ) ( ) ( 2 )jH H e H S?? ? ? ? ??? ? ?}{h)(?S提升方案的基本公式 ( 0 )( ) ( ) ( ) ( 2 )H H G S? ? ? ???( 0 )( ) ( ) ( ) ( 2 )G G H S? ? ? ???簡單的提升步驟: 已知:任何一對雙正交尺度函數(shù) 和 (對應于 和 ), 步驟:選擇合適的三角多項式 并根據(jù)下式獲得新的 和新的 ? )0(~?)(?H )(~ )0( ?H )(?S)(~ ?H )(?G( 0 )( ) ( ) ( ) ( 2 )H H G S? ? ? ???( 0 )( ) ( ) ( ) ( 2 )G G H S? ? ? ???用戶定制( custom_design) 從 haar小波出發(fā)的提升 ? 已知:
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1