【摘要】1.三角函數(shù)的應(yīng)用情景:如圖,某大風(fēng)車的半徑為2m,每12s旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面m,風(fēng)車圓周上一點(diǎn)A從最低點(diǎn)O開始,運(yùn)動t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關(guān)系式嗎?你能畫出它的圖象嗎?1.已知函數(shù)類型求解析式的方法是________.答案:待
2024-12-08 20:23
【摘要】?1?14?§函數(shù))sin(????Ay的圖象【學(xué)習(xí)目標(biāo)、細(xì)解考綱】“五點(diǎn)法”作出函數(shù))(???wxAsmy以及函數(shù))cos(???wxAy的圖象的圖象。AW、、?對函數(shù))sin???wxAy(的圖象的影響.xysin?的圖象變換到)
2024-12-02 10:24
【摘要】y=Asin(ωx+φ)的圖象復(fù)習(xí):y=Asin(?x+?)(A0,?0):A---振幅,2T???---周期,1fT?---頻率,?x+?---相位,?---初相.:(1)伸縮變換振幅變換周期變換(2)平移變換上下平移左右平移(-
2024-11-17 18:03
【摘要】§8函數(shù)y=Asin(ωx+φ)的圖像一、教學(xué)目標(biāo)1、知識與技能:(1)進(jìn)一步理解表達(dá)式y(tǒng)=Asin(ωx+φ),掌握A、φ、ωx+φ的含義;(2)熟練掌握由xysin?的圖象得到函數(shù))()sin(RxkxAy??????的圖象的方法;(3)會由函數(shù)y=Asin(ωx+
2024-12-05 06:38
【摘要】1.三角函數(shù)的誘導(dǎo)公式設(shè)0°≤α≤90°,對于任意一個0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當(dāng)β∈[0°,90°],180°-α,當(dāng)β∈[90°,180°],
2024-12-09 03:46
【摘要】函數(shù)y=Asin(ωx+φ)的圖象及性質(zhì)專題一、選擇題1.已知函數(shù)f(x)=sin(ω0)的最小正周期為π,則該函數(shù)的圖像( )A.關(guān)于點(diǎn)對稱B.關(guān)于直線x=對稱C.關(guān)于點(diǎn)對稱D.關(guān)于直線x=對稱解析由已知,ω=2,所以f(x)=sin,因為f=0,所以函數(shù)圖像關(guān)于點(diǎn)中心對稱,故選A.
2025-03-24 12:15
【摘要】第2章平面向量2.1向量的概念及表示情景:如圖,一只老鼠從A處以30km/h的速度向西北方向逃竄,如果貓由B處向正東方向以40km/h的速度追.思考:貓能捉到老鼠嗎?為什么?1.我們把既有________又有________的量叫做向量.如:力、位移、速度、加速度等.答案:大小方向
2024-12-08 13:12
【摘要】第1章三角函數(shù)1.1任意角、弧度1.任意角你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了小時,你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時間校準(zhǔn)后,分針旋轉(zhuǎn)了多少度?從該問題中可以看出,要正確地表達(dá)“校準(zhǔn)”手表的過程,需要同時說明分針的旋轉(zhuǎn)量和旋轉(zhuǎn)方向.當(dāng)分針旋轉(zhuǎn)超過一周后,如何表述這
2024-12-09 03:49
【摘要】第二章函數(shù)概念與基本初等函數(shù)函數(shù)的概念和圖象(一)教學(xué)目標(biāo):使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個要素,學(xué)會求某些函數(shù)的定義域,掌握判定兩個函數(shù)是否相同的方法;使學(xué)生理解靜與動的辯證關(guān)系.教學(xué)重點(diǎn):函數(shù)的概念,函數(shù)定義域的求法.教學(xué)難點(diǎn):函數(shù)概念的理解.教學(xué)過程:Ⅰ.課題導(dǎo)入[師]在初中,
2024-12-08 21:22
【摘要】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
【摘要】函數(shù)的概念和圖象(二)一、基礎(chǔ)過關(guān)1.若函數(shù)g(x+2)=2x+3,則g(3)的值是________.2.函數(shù)f(x)=x-2+2-x的定義域是________,值域是________.3.已知f滿足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(72)=________
2024-12-08 02:38
【摘要】?1?14?2)4sin(????xy2)4sin(????xy§函數(shù))sin(????Ay的圖象【學(xué)習(xí)目標(biāo)、細(xì)解考綱】“五點(diǎn)法”作出函數(shù))(???wxAsmy以及函數(shù))cos(???wxAy的圖象的圖象。AW、、?對函數(shù))sin???wxAy
2024-11-30 07:39
【摘要】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個點(diǎn)都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【摘要】課題正弦函數(shù)、余弦函數(shù)的圖象教學(xué)目標(biāo)知識與技能了解利用單位圓中的正弦線畫正弦曲線的方法過程與方法掌握“五點(diǎn)法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡單的正、余弦曲線.情感態(tài)度價值觀研究函數(shù)的性質(zhì)常常以圖象直觀為基礎(chǔ),通過觀察函數(shù)的圖象,從圖象的特征獲得函數(shù)的性質(zhì)是一個基本方法
2024-11-19 23:26
【摘要】1.正弦函數(shù)、余弦函數(shù)的圖象【學(xué)習(xí)要求】1.了解利用單位圓中的正弦線畫正弦曲線的方法.2.掌握“五點(diǎn)法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡單的正、余弦曲線.3.理解正弦曲線與余弦曲線之間的聯(lián)系.【學(xué)法指導(dǎo)】1.研究函數(shù)的性質(zhì)常常以圖象直觀為基礎(chǔ),通過觀察函數(shù)的圖象,從圖象的特征獲得函數(shù)的性質(zhì)