【摘要】2.3.1平面向量基本原理【學(xué)習(xí)目標(biāo)】1.了解平面向量的基本定理及其意義;2.掌握三點(或三點以上)的共線的證明方法:3.提高學(xué)生分析問題、解決問題的能力。【預(yù)習(xí)指導(dǎo)】1、平面向量的基本定理如果1e,2e是同一平面內(nèi)兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)1?,
2024-12-05 10:15
【摘要】第二章平面向量平面向量的基本定理及坐標(biāo)表示1.掌握平面向量基本定理并能熟練應(yīng)用.2.掌握平面向量的坐標(biāo)運算.3.理解用坐標(biāo)表示平面向量共線的條件及判斷向量是否共線.1.已知e1、e2是表示平面內(nèi)所有向量的一組基底,則下列各組向量中,不能作為平面向量一組基底的是()A.e1+e2和e1-e2
2024-11-19 17:33
【摘要】課題坐標(biāo)的標(biāo)示及運算教學(xué)目標(biāo)知識與技能了解平面向量的正交分解,掌握向量的坐標(biāo)表示.過程與方法掌握兩個向量和、差及數(shù)乘向量的坐標(biāo)運算法則.情感態(tài)度價值觀正確理解向量坐標(biāo)的概念,要把點的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.重點溝通向量“數(shù)”與“形”的特征,使向
2024-11-19 17:32
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)平面向量基本定理課后訓(xùn)練北師大版必修4"1.已知向量a=e1-2e2,b=2e1+e2.其中e1,e2不共線,則a+b與c=6e1-2e2的關(guān)系是().A.不共線B.共線C.相等D.無法確定2.設(shè)
2024-12-03 03:14
【摘要】平面向量基本定理復(fù)習(xí)a?b???復(fù)習(xí):oAPB????ROBOAOP??????????1G1F?創(chuàng)設(shè)情境、提出問題2F1v2vv?(1)力的分解(2)速度的分解怎樣探求這種關(guān)系?之間有什么關(guān)系呢?與么平面內(nèi)的任一向量,那是這一
2025-06-05 22:19
【摘要】平面向量應(yīng)用舉例平面幾何中的向量方法問題提出t57301p2???????,使得向量可以進(jìn)行線性運算和數(shù)量積運算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由
2024-11-17 12:03
【摘要】?1.平面向量共線的坐標(biāo)表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2024-08-14 18:26
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)正弦函數(shù)、余弦函數(shù)的圖象學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.用“五點法”作函數(shù)y=cos2x,x∈R的圖象時,首先應(yīng)描出的五個點的橫坐標(biāo)是()A.0,π2,π,3π2,2πB.0,π4,π2,3π4,πC.0,π,2π,3π,4π
2024-12-09 03:45
【摘要】雙基達(dá)標(biāo)?限時20分鐘?1.如果e1、e2是平面α內(nèi)所有向量的一組基底,那么下列命題正確的是().A.若實數(shù)λ1、λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.對空間任一向量a都可以表示為a=λ1e1+λ2e2,其中λ1、λ2∈RC.λ1e1+λ2e
2024-11-27 23:46
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量數(shù)量積的運算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??????12,12,則下列結(jié)論中正確的是()A.|a|=|b
2024-12-05 06:47
【摘要】平面向量的數(shù)量積的物理背景及其含義命題方向1計算向量的數(shù)量積例1已知|a|=4,|b|=5,當(dāng)(1)a∥b;(2)a⊥b;(3)a與b的夾角為60°時,分別求a與b的數(shù)量積.[分析]a∥b時其夾角為0°或180°,a⊥b時其夾角為90°,將兩向量的模及夾角代入
【摘要】平面向量數(shù)量積的物理背景及其含義考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量的數(shù)量積的基本運算3、5向量的夾角與垂直問題1、2、68、1112向量的模47、9、101.若a·b<0,則a與b的夾角θ的取值范圍是()A.??????0,π2
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.函數(shù)y=cos??????x+π2(x∈R)是()A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.無法確定解析:y=cos??????x+π2=-sinx,所以此函數(shù)為奇函數(shù).答案:A2
【摘要】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運算考查知識點及角度難易度及題號基礎(chǔ)中檔稍難平面向量的坐標(biāo)表示1、2、46平面向量的坐標(biāo)運算3、57、8綜合問題9、10111.若O(0,0),A(1,2),且OA′→=2OA→,則A′點坐標(biāo)為()A.(1,4)
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一、|a2b|≤|a||b|的應(yīng)用若a=(x1,y1),b=(x2,y2),則平面向量的數(shù)量積的性質(zhì)|a2b|≤|a||b|的坐標(biāo)表示為x1x2+y1y2≤2212122222121)(yyxxyxyx????≤(x12+y12)(x22+y22).不等式(x1x2