【總結(jié)】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2024-11-19 20:38
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量在物理中的應(yīng)用1、3、59向量在幾何中的應(yīng)用6、7、10綜合運(yùn)用2、48111.若向量OF1→=(1,1),OF2→=(-3,-2)分別表示兩個力F1,F(xiàn)2,則|F
2024-12-08 07:03
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù),使得ab
2024-11-18 12:17
【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示2020/12/25研修班2問題提出1.向量加法與減法有哪幾種幾何運(yùn)算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;
【總結(jié)】復(fù)習(xí):共線向量基本定理:向量與向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03
【總結(jié)】2.1平面向量的實際背景及基本概念1.通過再現(xiàn)物理學(xué)中學(xué)過的力、位移等概念與向量之間的聯(lián)系,在類比抽象過程中引入向量概念,并建立學(xué)生學(xué)習(xí)向量的認(rèn)知基礎(chǔ).2.理解向量的有關(guān)概念:向量的表示法、向量的模、單位向量、相等向量、共線向量.基礎(chǔ)梳理一、向量的概念1.向量的實際背景.有下列物理量:位移、路程、速度、
2024-11-19 19:36
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)向量減法運(yùn)算及其幾何意義學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.設(shè)b是a的相反向量,則下列說法錯誤的是()A.a(chǎn)與b的長度必相等B.a(chǎn)∥bC.a(chǎn)與b一定不相等D.a(chǎn)是b的相反向量解析:根據(jù)相反向量的定義可知,C錯誤,因為0與0互為相反向量,但0與0相等.
2024-12-09 03:43
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)任意角學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.把一條射線繞著端點按順時針方向旋轉(zhuǎn)240°所形成的角是()A.120°B.-120°C.240°D.-240°解析:一條射線繞著端點順時針旋轉(zhuǎn)240°所形成的角是-
2024-12-08 20:24
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)向量加法運(yùn)算及其幾何意義學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.在平行四邊形ABCD中,AB→+CA→+BD→等于()→→→→解析:原式=CA→+AB→+BD→=CD→.答案:D2.若C是線段AB的中點,則AC→+BC→=()
【總結(jié)】平面向量共線的坐標(biāo)表示一、求點P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實數(shù)λ的值.例1已知點A(-2,-3),點B(4,1),延長AB到P,使|AP|=3|PB|,求點P的坐標(biāo).解:因為點在AB的延長線上,P為AB的外分點,所以AP=λPB,λ0
2024-11-19 17:32
【總結(jié)】2.平面向量共線的坐標(biāo)表示命題方向1三點共線問題例1.O是坐標(biāo)原點,OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時,A、B、C三點共線?[分析]由A、B、C三點共線可知,AB→、AC→、BC→中任兩個共線,由坐標(biāo)表示的共線條件解方
【總結(jié)】階段質(zhì)量評估(二)平面向量本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分,考試時間120分鐘.第Ⅰ卷(選擇題)一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.下列量不是向量的是()A.力B.速
2024-12-08 07:02
【總結(jié)】平面向量的實際背景及基本概念一、向量中有關(guān)概念的辨析、向量、有向線段對這幾個概念的理解容易出現(xiàn)概念不清的問題.數(shù)量只有大小,沒有方向,其大小可以用實數(shù)來表示,它是一個代數(shù)量,數(shù)量之間可以比較大小;向量既有大小又有方向,向量之間不可以比較大小;有向線段是向量的直觀性表示,不能說向量就是有向線段.、共線向量、相等向量平行向量也
2024-11-19 20:39
【總結(jié)】平面向量的實際背景及基本概念1.下列說法正確的是()A.方向相同或相反的向量是平行向量B.零向量的長度是0C.長度相等的向量叫相等向量D.共線向量是在同一條直線上的向量解析:對A,由于0與任意向量平行,所以A錯誤;對B,零向量的長度是0,正確;對C,長度相等的向量方向不一定相同,故C錯誤;對D,共線向量不一定在同
【總結(jié)】金太陽新課標(biāo)資源網(wǎng)第二章《平面向量》測試(3)(新人教A版必修4)一、選擇題1.化簡得()A.B.C.D.2.設(shè)分別是與向的單位向量,則下列結(jié)論中正確的是()A.B.C.D.3.已知下列命題中:(1)若,且,則或,(2)若,則或(3)若不平行的兩個非零向量,滿足,則(4)若與
2025-04-07 02:59