【總結(jié)】平面向量共線的坐標(biāo)表示一、求點(diǎn)P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實(shí)數(shù)λ的值.例1已知點(diǎn)A(-2,-3),點(diǎn)B(4,1),延長AB到P,使|AP|=3|PB|,求點(diǎn)P的坐標(biāo).解:因?yàn)辄c(diǎn)在AB的延長線上,P為AB的外分點(diǎn),所以AP=λPB,λ0
2024-11-19 17:32
【總結(jié)】2.平面向量共線的坐標(biāo)表示命題方向1三點(diǎn)共線問題例1.O是坐標(biāo)原點(diǎn),OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時(shí),A、B、C三點(diǎn)共線?[分析]由A、B、C三點(diǎn)共線可知,AB→、AC→、BC→中任兩個(gè)共線,由坐標(biāo)表示的共線條件解方
2024-11-19 20:38
【總結(jié)】階段質(zhì)量評(píng)估(二)平面向量本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分,考試時(shí)間120分鐘.第Ⅰ卷(選擇題)一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.下列量不是向量的是()A.力B.速
2024-12-08 07:02
【總結(jié)】平面向量的實(shí)際背景及基本概念一、向量中有關(guān)概念的辨析、向量、有向線段對(duì)這幾個(gè)概念的理解容易出現(xiàn)概念不清的問題.數(shù)量只有大小,沒有方向,其大小可以用實(shí)數(shù)來表示,它是一個(gè)代數(shù)量,數(shù)量之間可以比較大小;向量既有大小又有方向,向量之間不可以比較大小;有向線段是向量的直觀性表示,不能說向量就是有向線段.、共線向量、相等向量平行向量也
2024-11-19 20:39
【總結(jié)】平面向量的實(shí)際背景及基本概念1.下列說法正確的是()A.方向相同或相反的向量是平行向量B.零向量的長度是0C.長度相等的向量叫相等向量D.共線向量是在同一條直線上的向量解析:對(duì)A,由于0與任意向量平行,所以A錯(cuò)誤;對(duì)B,零向量的長度是0,正確;對(duì)C,長度相等的向量方向不一定相同,故C錯(cuò)誤;對(duì)D,共線向量不一定在同
【總結(jié)】金太陽新課標(biāo)資源網(wǎng)第二章《平面向量》測試(3)(新人教A版必修4)一、選擇題1.化簡得()A.B.C.D.2.設(shè)分別是與向的單位向量,則下列結(jié)論中正確的是()A.B.C.D.3.已知下列命題中:(1)若,且,則或,(2)若,則或(3)若不平行的兩個(gè)非零向量,滿足,則(4)若與
2025-04-07 02:59
【總結(jié)】平面向量的正交分解及坐標(biāo)表示一、三角形三條中線共點(diǎn)的證明圖10如圖10所示,已知在△ABC中,D、E、L分別是BC、CA、AB的中點(diǎn),設(shè)中線AD、BE相交于點(diǎn)P.求證:AD、BE、CL三線共點(diǎn).分析:欲證三條中線共點(diǎn),只需證明C、P、L三點(diǎn)共線.解:設(shè)AC=a,AB=b,則AL
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量共線的坐標(biāo)表示課時(shí)跟蹤檢測新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量共線的判定1、2、310由向量共線求參數(shù)56、7、8向量共線的應(yīng)用49111.已知m,n∈R,向量a=(2m+1,m+n)與b=
2024-12-08 20:21
【總結(jié)】平面向量基本定理如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量有且只有一對(duì)實(shí)數(shù)使.12ee,a,12,??,1122aee????不共線的向量叫做表示這一平面內(nèi)所有向量的一組基底.12e,e向量的
2024-11-19 17:33
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)課時(shí)跟蹤檢測新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量的有關(guān)概念16、8向量的表示方法10相等向量或共線向量2、3、49向量的應(yīng)用57、11121.下列說法中正確的個(gè)數(shù)是()①身高是一個(gè)向量.②
2024-12-09 03:44
【總結(jié)】第二章平面向量本章內(nèi)容介紹向量這一概念是由物理學(xué)和工程技術(shù)抽象出來的,是近代數(shù)學(xué)中重要和基本的數(shù)學(xué)概念之一,有深刻的幾何背景,是解決幾何問題的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可轉(zhuǎn)化為向量的加(減)法、數(shù)乘向量、數(shù)量積運(yùn)算,從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系.向量是溝通代數(shù)、幾何與三角函數(shù)的一種工
2024-12-08 01:51
【總結(jié)】[精練精析]平面向量應(yīng)用舉例素能綜合檢測2.已知△ABC中,BC邊最長,則△ABC的形狀為()(A)鈍角三角形(B)直角三角形(C)銳角三角形(D)等腰直角三角形【解析】選C.∴cos∠BAC0,∴0°∠BAC9
2024-12-02 10:15
【總結(jié)】第3課時(shí)平面向量的數(shù)量積基礎(chǔ)過關(guān)1.兩個(gè)向量的夾角:已知兩個(gè)非零向量和,過O點(diǎn)作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時(shí),與;當(dāng)θ=180°時(shí),與;如果與的夾角是90°,我們說與垂直,記作.2.兩個(gè)向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【總結(jié)】平面向量數(shù)量積的物理背景及其含義一、向量的向量積在物理學(xué)中,由于討論像力矩以及物體繞軸旋轉(zhuǎn)時(shí)的角速度與線速度之間的關(guān)系等這類問題的需要,就必須引進(jìn)兩向量乘法的另一運(yùn)算——向量的向量積.定義如下:兩個(gè)向量a與b的向量積是一個(gè)新的向量c:(1)c的模等于以a及b兩個(gè)向量為邊所作成的平行四邊形的面積;(2)c垂直于
2024-12-05 06:47
【總結(jié)】課題平面向量數(shù)量積的坐標(biāo)表示、模、夾角教學(xué)目標(biāo)知識(shí)與技能理解兩個(gè)向量數(shù)量積坐標(biāo)表示的推導(dǎo)過程,過程與方法能根據(jù)向量的坐標(biāo)計(jì)算向量的模,情感態(tài)度價(jià)值觀并推導(dǎo)平面內(nèi)兩點(diǎn)間的距離公式重點(diǎn)能根據(jù)向量的坐標(biāo)求向量的夾角及判定兩個(gè)向量垂直難點(diǎn)能運(yùn)用數(shù)量積的坐標(biāo)表示進(jìn)行向量數(shù)量積的運(yùn)算.