【總結(jié)】平面向量的基本定理及坐標(biāo)表示習(xí)題課一、選擇題1.如圖,e1,e2為互相垂直的單位向量,向量a+b+c可表示為()A.3e1-2e2B.-3e1-3e2C.3e1+2e2D.2e1+3e2解析:a+b+c=3e1+2e2.答案:C2.已知向量a=(1,-2),|b|=4|a|
2024-11-19 17:33
【總結(jié)】教學(xué)內(nèi)容:§平面向量的基本定理及坐標(biāo)表示(1)教學(xué)目標(biāo)1.理解平面向量的基本定理,會(huì)作出由已知一組基底所表示的向量;2.理解向量夾角及垂直的概念;3.理解向量的正交分解,感受正交分解的實(shí)際意義,掌握向量的坐標(biāo)表示。本節(jié)重點(diǎn)平面向量的基本定理,向量的正交分解及坐標(biāo)表示本節(jié)難點(diǎn)平面向量的
2024-11-20 03:14
【總結(jié)】來源教學(xué)內(nèi)容:§教學(xué)目標(biāo)1.了解向量的物理背景及在物理中的意義2.理解向量、零向量、單位向量、相等向量的概念,會(huì)用字母表示向量,能讀寫已知圖中的向量;3.掌握向量的幾何表示,明確向量的長度、零向量、單位向量的幾何意義;4.了解共線向量、平行向量的概念,會(huì)根據(jù)圖形判定是否平行、共線、相
2024-12-08 16:21
【總結(jié)】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點(diǎn)共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點(diǎn)在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個(gè)數(shù),而且使問題具有代數(shù)化的特點(diǎn)、程序
2024-11-19 20:38
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量在物理中的應(yīng)用1、3、59向量在幾何中的應(yīng)用6、7、10綜合運(yùn)用2、48111.若向量OF1→=(1,1),OF2→=(-3,-2)分別表示兩個(gè)力F1,F(xiàn)2,則|F
2024-12-08 07:03
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點(diǎn):首尾相接特點(diǎn):共起點(diǎn)bBaABAab??:O特點(diǎn):共起點(diǎn):::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使得ab
2024-11-18 12:17
【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示2020/12/25研修班2問題提出1.向量加法與減法有哪幾種幾何運(yùn)算法則?λa?(1)|λa|=|λ||a|;(2)λ0時(shí),λa與a方向相同;λ0時(shí),λa與a方向相反;
【總結(jié)】復(fù)習(xí):共線向量基本定理:向量與向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點(diǎn)且,用表
2024-11-17 12:03
【總結(jié)】2.1平面向量的實(shí)際背景及基本概念1.通過再現(xiàn)物理學(xué)中學(xué)過的力、位移等概念與向量之間的聯(lián)系,在類比抽象過程中引入向量概念,并建立學(xué)生學(xué)習(xí)向量的認(rèn)知基礎(chǔ).2.理解向量的有關(guān)概念:向量的表示法、向量的模、單位向量、相等向量、共線向量.基礎(chǔ)梳理一、向量的概念1.向量的實(shí)際背景.有下列物理量:位移、路程、速度、
2024-11-19 19:36
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)向量減法運(yùn)算及其幾何意義學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.設(shè)b是a的相反向量,則下列說法錯(cuò)誤的是()A.a(chǎn)與b的長度必相等B.a(chǎn)∥bC.a(chǎn)與b一定不相等D.a(chǎn)是b的相反向量解析:根據(jù)相反向量的定義可知,C錯(cuò)誤,因?yàn)?與0互為相反向量,但0與0相等.
2024-12-09 03:43
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)任意角學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.把一條射線繞著端點(diǎn)按順時(shí)針方向旋轉(zhuǎn)240°所形成的角是()A.120°B.-120°C.240°D.-240°解析:一條射線繞著端點(diǎn)順時(shí)針旋轉(zhuǎn)240°所形成的角是-
2024-12-08 20:24
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)向量加法運(yùn)算及其幾何意義學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.在平行四邊形ABCD中,AB→+CA→+BD→等于()→→→→解析:原式=CA→+AB→+BD→=CD→.答案:D2.若C是線段AB的中點(diǎn),則AC→+BC→=()
【總結(jié)】平面向量共線的坐標(biāo)表示一、求點(diǎn)P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實(shí)數(shù)λ的值.例1已知點(diǎn)A(-2,-3),點(diǎn)B(4,1),延長AB到P,使|AP|=3|PB|,求點(diǎn)P的坐標(biāo).解:因?yàn)辄c(diǎn)在AB的延長線上,P為AB的外分點(diǎn),所以AP=λPB,λ0
2024-11-19 17:32
【總結(jié)】2.平面向量共線的坐標(biāo)表示命題方向1三點(diǎn)共線問題例1.O是坐標(biāo)原點(diǎn),OA→=(k,12),OB→=(4,5),OC→=(10,k).當(dāng)k為何值時(shí),A、B、C三點(diǎn)共線?[分析]由A、B、C三點(diǎn)共線可知,AB→、AC→、BC→中任兩個(gè)共線,由坐標(biāo)表示的共線條件解方
【總結(jié)】階段質(zhì)量評(píng)估(二)平面向量本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分,考試時(shí)間120分鐘.第Ⅰ卷(選擇題)一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.下列量不是向量的是()A.力B.速
2024-12-08 07:02