【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一.復(fù)習(xí)回顧:問題:回憶一下,向量的數(shù)量積?又如何用數(shù)量積、長度來反映夾角?向量的運(yùn)算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答案:babababa????????cos,cos運(yùn)算律有:)()().(2bababa????????abba??
2025-01-20 04:59
【摘要】4.平面向量的基本定理、平面向量的坐標(biāo)表示及平面向量的坐標(biāo)運(yùn)算.5.平面向量的數(shù)量積及向量的應(yīng)用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實(shí)數(shù)與向量的積、兩個(gè)向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關(guān)長度、角度和垂直的
2025-05-19 17:09
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
【摘要】平面向量數(shù)量積的坐標(biāo)表示、模、夾角.),1,1(),32,1(1?的夾角與求已知例baba????例2已知A(1,2),B(2,3),C(-2,5),試判斷?ABC的形狀,并給出證明.練習(xí)(1)已知=(4,3),向量是垂直于的單位向量,求.abab
2025-04-24 09:59
【摘要】第3講平面向量的數(shù)量積A級(jí)基礎(chǔ)演練(時(shí)間:30分鐘滿分:55分)一、選擇題(每小題5分,共20分)1.若向量a=(3,m),b=(2,-1),a·b=0,則實(shí)數(shù)m的值為().A.-32C.2D.6解析由a·b=3
2024-12-08 08:09
【摘要】向量數(shù)量積的物理背景與定義復(fù)習(xí)回顧x1+x2y1+y2x1-x2y1-y2λx1λy11、若向量a=(x1,y1),b=(x2,y2)則向量a+b=(,)
2024-11-09 23:29
2024-11-12 01:35
【摘要】平面向量的實(shí)際背景及基本概念平面向量的線性運(yùn)算——教材解讀山東劉乃東一、要點(diǎn)精講1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫向量,一般用,,,…來表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如。向量的大小,即向量的模(長度),記作。注:向量與數(shù)量不同,數(shù)量之間可以比較大小,而兩個(gè)向量不能比較大小。(2)零向量:長度為零的向量
2025-08-21 16:13
【摘要】平面向量數(shù)量積的物理背景及其含義一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa的方向與a方向相反;特別地,當(dāng)λ=0或a=0時(shí),λa=0設(shè)a,
2025-06-05 22:21
【摘要】Fs?┓Fs?┓W=|F||s|cos?OABFS?功:為起點(diǎn),如果以,和對于兩個(gè)非零向量Oba??a??OA作??bOB的夾角與叫做向量那么AOB???ba?oAB?b?a夾角的范圍:001800???顯然
2025-07-23 05:52
【摘要】課題:平面向量的數(shù)量積(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握平面向量數(shù)量積的坐標(biāo)表示;2、掌握向量垂直的坐標(biāo)表示的等價(jià)條件?!菊n前預(yù)習(xí)】1、(1)已知向量a和b的夾角是3?,|a|=2,|b|=1,則(a+b)2
2024-12-05 00:28
【摘要】第3課時(shí)平面向量的數(shù)量積基礎(chǔ)過關(guān)1.兩個(gè)向量的夾角:已知兩個(gè)非零向量和,過O點(diǎn)作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時(shí),與;當(dāng)θ=180°時(shí),與;如果與的夾角是90°,我們說與垂直,記作.2.兩個(gè)向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【摘要】平面向量的內(nèi)積【教學(xué)目標(biāo)】知識(shí)目標(biāo):(1)了解平面向量內(nèi)積的概念及其幾何意義.(2).能力目標(biāo):通過實(shí)例引出向量內(nèi)積的定義,培養(yǎng)學(xué)生觀察和歸納的能力.【教學(xué)重點(diǎn)】平面向量數(shù)量積的概念及計(jì)算公式.【教學(xué)難點(diǎn)】數(shù)量積的概念及利用數(shù)量積來計(jì)算兩個(gè)非零向量的夾角.【教學(xué)設(shè)計(jì)】教材從某人拉小車做功出發(fā),引入兩個(gè)向量內(nèi)積的概念.需要強(qiáng)調(diào)力與位移都是向量,
2025-04-17 01:00
【摘要】平面向量基本概念【教學(xué)目標(biāo)】知識(shí)目標(biāo):(1)了解向量的概念;(2)理解平面向量的含義、向量的幾何表示,向量的模.能力目標(biāo):(1)能將生活中的一些簡單問題抽象為向量問題;(2)理解零向量、單位向量、平行向量、相等向量、共線向量的含義,能在圖形中辨認(rèn)相等向量和共線向量.(3)從“平行向量→相等向量→共線向量”的逐步認(rèn)識(shí),充分揭示向量的兩個(gè)要素及向量可以平移的特點(diǎn).
【摘要】(1)平面向量的加法崇明區(qū)東門中學(xué)趙靜教學(xué)目標(biāo):1.經(jīng)歷引進(jìn)向量加法的過程,初步掌握向量加法的三角形法則,會(huì)用作圖的方法求兩個(gè)向量的和向量。2.知道零向量的意義以及零向量的特征。3.通過作圖歸納出向量的加法的交換律和結(jié)合律,會(huì)利用它們進(jìn)行向量運(yùn)算。教學(xué)重點(diǎn):掌握向量加法的三角形法則,會(huì)用作圖