【摘要】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2024-11-18 08:48
【摘要】第三章不等式知識(shí)點(diǎn)新課程標(biāo)準(zhǔn)的要求層次要求領(lǐng)域目標(biāo)要求不等關(guān)系與不等式1.通過(guò)具體情景,了解不等式(組)的實(shí)際背景,借助數(shù)軸,能從“形”和“數(shù)”兩個(gè)方面來(lái)認(rèn)識(shí)不等式2.理解不等式的性質(zhì),能運(yùn)用不等式的性質(zhì)證明簡(jiǎn)單不等式以及解不等式1.通過(guò)具體情境,感受在現(xiàn)實(shí)世界和日常生活
2024-11-18 08:09
【摘要】第2課時(shí)基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會(huì)解決有關(guān)的實(shí)際應(yīng)用問(wèn)題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【摘要】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(
【摘要】一元二次不等式的應(yīng)用復(fù)習(xí)一元二次方程方程有兩個(gè)不等的根0??044)2(22????abacabxa(1)公式法X=方程有一個(gè)根0??方程沒(méi)有根0??求根的方法:(2)配方法,化為頂點(diǎn)式(3)十字相乘法復(fù)習(xí)一元二次方程:ax2+bx+c=0(a≠0)的根例:求0322???x
2024-11-17 15:05
【摘要】淄川般陽(yáng)中學(xué)洪貴云基本不等式:(說(shuō)課)2baab??教材分析教法分析教學(xué)目標(biāo)教學(xué)過(guò)程設(shè)計(jì)說(shuō)明一.教材分析(一)教材的地位和作用(二)課時(shí)安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52
【摘要】第2課時(shí)余弦定理...如圖,某隧道施工隊(duì)為了開(kāi)鑿一條山地隧道,需要測(cè)算隧道通過(guò)這座山的長(zhǎng)度.工程技術(shù)人員先在地面上選一適當(dāng)?shù)奈恢肁,量出A到山腳B、C的距離,其中AB=km,AC=1km,再利用經(jīng)緯儀測(cè)出A對(duì)山腳BC(即線段BC)的張角∠BAC=150
2024-12-08 02:37
【摘要】陜西省咸陽(yáng)市涇陽(yáng)縣云陽(yáng)中學(xué)高中數(shù)學(xué)不等關(guān)系導(dǎo)學(xué)案北師大版必修5【教學(xué)目標(biāo)】1.知識(shí)與技能:通過(guò)具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過(guò)程與方法:通過(guò)解決具體問(wèn)題,學(xué)會(huì)依據(jù)具體問(wèn)題的實(shí)際背景分析問(wèn)題、解決問(wèn)題的方法;3.情態(tài)與價(jià)值:通過(guò)解決具體問(wèn)題,體會(huì)
2024-11-27 22:09
【摘要】《基本不等式》同步測(cè)試一、選擇題,本大題共10小題,每小題4分,滿分40分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.若a?R,下列不等式恒成立的是()A.21aa??B.2111a??C.296aa??D.2lg(1)lg|2|aa??
2024-11-15 21:17
【摘要】:2baab??復(fù)習(xí)引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【摘要】:2baab??引入新課提問(wèn)1:我們把“風(fēng)車”造型抽象成下圖.在正方形ABCD中有4個(gè)全等的直角三角形.設(shè)直角三角形的兩條直角邊的長(zhǎng)為a、b,那么正方形的邊長(zhǎng)為多少?面積為多少呢?ADCBGEFH引入新課提問(wèn)1:我們把“風(fēng)車”造型抽象成下圖.在
2024-11-19 18:20
【摘要】復(fù)習(xí)課不等式課時(shí)目標(biāo),并能解有關(guān)的實(shí)際應(yīng)用問(wèn)題.單的線性規(guī)劃問(wèn)題的解法..不等式—錯(cuò)誤!一、選擇題1.設(shè)ab0,則下列不等式中一定成立的是()A.a(chǎn)-b0B.0ab1C.ab<
2024-12-04 23:45
【摘要】第三章不等式不等關(guān)系不等關(guān)系與不等式課時(shí)目標(biāo).,并能運(yùn)用這些性質(zhì)解決有關(guān)問(wèn)題.1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a____b;如果a-b等于____,那么a=b;如果a-b是負(fù)數(shù),那么a____b,反之也成立.(2)符號(hào)表示
2024-12-05 06:34
【摘要】第3課時(shí)一元二次不等式及其解法,掌握一元二次不等式的解法...為促進(jìn)某品牌彩電的銷售,廠家設(shè)計(jì)了兩套降價(jià)方案.方案①:先降價(jià)x%,再降價(jià)x%(x0);方案②:一次性降價(jià)2x%,問(wèn)哪套方案降價(jià)幅度大?問(wèn)題1問(wèn)題2一個(gè)二次解成立的實(shí)數(shù)一元二次不等式一般地
2024-11-17 23:14
【摘要】:學(xué)案(第一課時(shí))一、學(xué)習(xí)目標(biāo)基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿足,則的最小值是.(2)已知正數(shù)滿足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25