【摘要】平面向量的實(shí)際背景及基本概念一、向量中有關(guān)概念的辨析、向量、有向線(xiàn)段對(duì)這幾個(gè)概念的理解容易出現(xiàn)概念不清的問(wèn)題.數(shù)量只有大小,沒(méi)有方向,其大小可以用實(shí)數(shù)來(lái)表示,它是一個(gè)代數(shù)量,數(shù)量之間可以比較大小;向量既有大小又有方向,向量之間不可以比較大小;有向線(xiàn)段是向量的直觀性表示,不能說(shuō)向量就是有向線(xiàn)段.、共線(xiàn)向量、相等向量平行向量也
2024-11-19 20:39
【摘要】平面向量的實(shí)際背景及基本概念1.下列說(shuō)法正確的是()A.方向相同或相反的向量是平行向量B.零向量的長(zhǎng)度是0C.長(zhǎng)度相等的向量叫相等向量D.共線(xiàn)向量是在同一條直線(xiàn)上的向量解析:對(duì)A,由于0與任意向量平行,所以A錯(cuò)誤;對(duì)B,零向量的長(zhǎng)度是0,正確;對(duì)C,長(zhǎng)度相等的向量方向不一定相同,故C錯(cuò)誤;對(duì)D,共線(xiàn)向量不一定在同
【摘要】金太陽(yáng)新課標(biāo)資源網(wǎng)第二章《平面向量》測(cè)試(3)(新人教A版必修4)一、選擇題1.化簡(jiǎn)得()A.B.C.D.2.設(shè)分別是與向的單位向量,則下列結(jié)論中正確的是()A.B.C.D.3.已知下列命題中:(1)若,且,則或,(2)若,則或(3)若不平行的兩個(gè)非零向量,滿(mǎn)足,則(4)若與
2025-04-07 02:59
【摘要】平面向量的正交分解及坐標(biāo)表示一、三角形三條中線(xiàn)共點(diǎn)的證明圖10如圖10所示,已知在△ABC中,D、E、L分別是BC、CA、AB的中點(diǎn),設(shè)中線(xiàn)AD、BE相交于點(diǎn)P.求證:AD、BE、CL三線(xiàn)共點(diǎn).分析:欲證三條中線(xiàn)共點(diǎn),只需證明C、P、L三點(diǎn)共線(xiàn).解:設(shè)AC=a,AB=b,則AL
2024-11-19 17:32
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量共線(xiàn)的坐標(biāo)表示課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量共線(xiàn)的判定1、2、310由向量共線(xiàn)求參數(shù)56、7、8向量共線(xiàn)的應(yīng)用49111.已知m,n∈R,向量a=(2m+1,m+n)與b=
2024-12-08 20:21
【摘要】平面向量基本定理如果是同一平面內(nèi)的兩個(gè)不共線(xiàn)向量,那么對(duì)于這一平面內(nèi)的任意向量有且只有一對(duì)實(shí)數(shù)使.12ee,a,12,??,1122aee????不共線(xiàn)的向量叫做表示這一平面內(nèi)所有向量的一組基底.12e,e向量的
2024-11-19 17:33
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量的有關(guān)概念16、8向量的表示方法10相等向量或共線(xiàn)向量2、3、49向量的應(yīng)用57、11121.下列說(shuō)法中正確的個(gè)數(shù)是()①身高是一個(gè)向量.②
2024-12-09 03:44
【摘要】第二章平面向量本章內(nèi)容介紹向量這一概念是由物理學(xué)和工程技術(shù)抽象出來(lái)的,是近代數(shù)學(xué)中重要和基本的數(shù)學(xué)概念之一,有深刻的幾何背景,是解決幾何問(wèn)題的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可轉(zhuǎn)化為向量的加(減)法、數(shù)乘向量、數(shù)量積運(yùn)算,從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系.向量是溝通代數(shù)、幾何與三角函數(shù)的一種工
2024-12-08 01:51
【摘要】[精練精析]平面向量應(yīng)用舉例素能綜合檢測(cè)2.已知△ABC中,BC邊最長(zhǎng),則△ABC的形狀為()(A)鈍角三角形(B)直角三角形(C)銳角三角形(D)等腰直角三角形【解析】選C.∴cos∠BAC0,∴0°∠BAC9
2024-12-02 10:15
【摘要】第3課時(shí)平面向量的數(shù)量積基礎(chǔ)過(guò)關(guān)1.兩個(gè)向量的夾角:已知兩個(gè)非零向量和,過(guò)O點(diǎn)作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時(shí),與;當(dāng)θ=180°時(shí),與;如果與的夾角是90°,我們說(shuō)與垂直,記作.2.兩個(gè)向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【摘要】平面向量數(shù)量積的物理背景及其含義一、向量的向量積在物理學(xué)中,由于討論像力矩以及物體繞軸旋轉(zhuǎn)時(shí)的角速度與線(xiàn)速度之間的關(guān)系等這類(lèi)問(wèn)題的需要,就必須引進(jìn)兩向量乘法的另一運(yùn)算——向量的向量積.定義如下:兩個(gè)向量a與b的向量積是一個(gè)新的向量c:(1)c的模等于以a及b兩個(gè)向量為邊所作成的平行四邊形的面積;(2)c垂直于
2024-12-05 06:47
【摘要】課題平面向量數(shù)量積的坐標(biāo)表示、模、夾角教學(xué)目標(biāo)知識(shí)與技能理解兩個(gè)向量數(shù)量積坐標(biāo)表示的推導(dǎo)過(guò)程,過(guò)程與方法能根據(jù)向量的坐標(biāo)計(jì)算向量的模,情感態(tài)度價(jià)值觀并推導(dǎo)平面內(nèi)兩點(diǎn)間的距離公式重點(diǎn)能根據(jù)向量的坐標(biāo)求向量的夾角及判定兩個(gè)向量垂直難點(diǎn)能運(yùn)用數(shù)量積的坐標(biāo)表示進(jìn)行向量數(shù)量積的運(yùn)算.
【摘要】2.3.1平面向量基本原理【學(xué)習(xí)目標(biāo)】1.了解平面向量的基本定理及其意義;2.掌握三點(diǎn)(或三點(diǎn)以上)的共線(xiàn)的證明方法:3.提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力?!绢A(yù)習(xí)指導(dǎo)】1、平面向量的基本定理如果1e,2e是同一平面內(nèi)兩個(gè)不共線(xiàn)的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)1?,
2024-12-05 10:15
【摘要】第二章平面向量平面向量的基本定理及坐標(biāo)表示1.掌握平面向量基本定理并能熟練應(yīng)用.2.掌握平面向量的坐標(biāo)運(yùn)算.3.理解用坐標(biāo)表示平面向量共線(xiàn)的條件及判斷向量是否共線(xiàn).1.已知e1、e2是表示平面內(nèi)所有向量的一組基底,則下列各組向量中,不能作為平面向量一組基底的是()A.e1+e2和e1-e2
【摘要】課題坐標(biāo)的標(biāo)示及運(yùn)算教學(xué)目標(biāo)知識(shí)與技能了解平面向量的正交分解,掌握向量的坐標(biāo)表示.過(guò)程與方法掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.情感態(tài)度價(jià)值觀正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開(kāi)來(lái).重點(diǎn)溝通向量“數(shù)”與“形”的特征,使向