【總結(jié)】第二章一、選擇題1.把平面上一切單位向量平移到共同始點(diǎn),那么這些向量的終點(diǎn)構(gòu)成的圖形是()A.一條線段B.一段圓弧C.兩個(gè)孤立的點(diǎn)D.一個(gè)圓[答案]D[解析]圖形是一個(gè)以始點(diǎn)為圓心,以1為半徑的圓.2.把所有相等的向量平移到同一起點(diǎn)后,這些向量的終點(diǎn)將落在(
2024-11-27 23:47
【總結(jié)】第二章一、選擇題1.向量(AB→+MB→)+(BO→+BC→)+OM→等于()A.BC→B.AB→C.AC→D.AM→[答案]C[解析]原式=AB→+BC→+MB→+BO→+OM→=AC→+0=AC→.2.若a、b為非零向量,則下列
2024-11-28 01:12
【總結(jié)】撰稿教師:李麗麗自學(xué)目標(biāo)1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學(xué)會(huì)求向量的模長;3.注意向量的特點(diǎn):可以平行移動(dòng)學(xué)習(xí)重、難點(diǎn):1.向量、相等向量、共線向量的概念;2.向量的幾何表示學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材77頁~79頁,找出疑惑之處)二、新課導(dǎo)學(xué)(一)問題探
【總結(jié)】§向量的加法(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)a,b在平面上任取一點(diǎn)A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B
2024-11-27 23:46
【總結(jié)】學(xué)習(xí)目標(biāo)1、掌握向量的加法運(yùn)算,并理解其幾何意義;2、會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;一、※課前準(zhǔn)備(預(yù)習(xí)教材80頁~83頁,找出疑惑之處)二、※新課導(dǎo)學(xué):1,回答以下問題(1)某
2024-11-18 16:44
【總結(jié)】§向量的概念(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點(diǎn),B為終點(diǎn)的有向線段記作_____,其長度(或模)記為__,長度為零的向量叫做_____,記作__,長度為1的向量叫做______3、向量可
【總結(jié)】2.1.4數(shù)乘向量一.學(xué)習(xí)要點(diǎn):數(shù)乘向量、向量共線和三點(diǎn)共線的判斷。二.學(xué)習(xí)過程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實(shí)數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實(shí)數(shù)λ與向量a的積是
【總結(jié)】一、選擇題1.sin°cos°=()A.22B.24C.2+14D.2+24【解析】原式=12[sin(°+°)+sin(°-°)]=12(sin45°+sin30°)=12×(22+
2024-11-27 23:35
【總結(jié)】§數(shù)乘向量(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1、實(shí)數(shù)λ與向量a的乘積是一個(gè)向量,記作;|a?|=。2、a?的方向當(dāng)λ0時(shí),與a;當(dāng)λ<
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列量不是向量的是().A.力B.速度C.質(zhì)量D.加速度解析質(zhì)量只有大小,沒有方向,不是向量.答案C2.下列說法錯(cuò)誤的是().A.向量AB→與BA→的長度相等B.兩個(gè)相等的向量若起點(diǎn)相
2024-11-28 01:55
【總結(jié)】撰稿教師:李麗麗自學(xué)目標(biāo),并理解其幾何意義。2.理解和應(yīng)用向量數(shù)乘的運(yùn)算律。學(xué)習(xí)過程一、※課前準(zhǔn)備(預(yù)習(xí)教材86頁~87頁,找出疑惑之處)二、※新課導(dǎo)學(xué)1.?dāng)?shù)乘定義:______________________是一個(gè)向量,記作a?,它的長度與方向規(guī)定如下:(1)||a?=____
【總結(jié)】第二章一、選擇題1.若|a|=3,|b|=3,且a與b的夾角為π6,則|a+b|=()A.3B.3C.21D.21[答案]D[解析]∵|a|=3,|b|=3,a與b的夾角為π6,∴|a+b|2=a2+2a·b+b2=9+2
【總結(jié)】2.3.2向量數(shù)量積的運(yùn)算律一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的運(yùn)算律及其簡(jiǎn)單運(yùn)用二、學(xué)習(xí)過程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的定義及其幾何意義、性質(zhì):二.新課學(xué)習(xí)::(1)(2)(3)
【總結(jié)】第二章一、選擇題1.設(shè)e1、e2是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-2e2和4e2-6e1C.e1+2e2和e2+2e1D.e2和e1+e2[答案]B[解析]∵4e2-6e1=-2(3e1-2
【總結(jié)】平面向量基本定理一.學(xué)習(xí)要點(diǎn):向量基本定理及其簡(jiǎn)單應(yīng)用二.學(xué)習(xí)過程:(一)復(fù)習(xí):1向量的加法運(yùn)算;2向量共線定理;(二)新課學(xué)習(xí):1.平面向量基本定理:如果1e,2e是同一平面內(nèi)的兩個(gè)向量,那么對(duì)于這一平面內(nèi)的任一向量a,