【總結(jié)】不等式的性質(zhì)雙基達(dá)標(biāo)限時(shí)20分鐘1.已知a,b,c,d∈R且ab0,-ca-db,則().A.bcadbd0,∴在-ca-db兩側(cè)乘ab不變號(hào),即-bc-ad,即bcad.答
2024-11-28 02:11
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)y=-sinx,x∈??????-π2,3π2的簡(jiǎn)圖是().解析由y=sinx與y=-sinx的圖象關(guān)于x軸對(duì)稱(chēng)可知選D.答案D2.在[0,2π]內(nèi),不等式sinx-32的解集是().A.(0,
2024-11-27 23:47
【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2024-11-17 17:33
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.計(jì)算sin(-1380°)的值為().A.-12C.-32D.32解析sin(1380°)=sin[60°+(-4)×360°]=sin60°=32.答案
2024-11-27 23:51
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.計(jì)算cos80°cos20°+sin80°·sin20°的值為().A.22B.32D.-22答案C2.設(shè)α∈??????0,π2,若sinα=35,則2cos
2024-11-28 01:12
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.函數(shù)y=3sin??????2x+π6的圖象的一條對(duì)稱(chēng)軸方程是().A.x=0B.x=2π3C.x=-π6D.x=π3解析令sin??????2x+π6=±1,得2x+π6=kπ+π2(k∈Z),即x=k2π
【總結(jié)】向量共線的條件和軸上向量的坐標(biāo)運(yùn)算一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘運(yùn)算,記作λa,它的長(zhǎng)度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa的方向與a方向相反;特別地,當(dāng)
2024-11-11 21:10
【總結(jié)】向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式及其簡(jiǎn)單運(yùn)用二、學(xué)習(xí)過(guò)程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的性質(zhì)及運(yùn)算律.二.新課學(xué)習(xí)::兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和,即:a=1,1()xy,b=2,2()xy則a?b=
2024-11-18 16:44
【總結(jié)】不等關(guān)系與不等式雙基達(dá)標(biāo)限時(shí)20分鐘1.下面表示“a與b的差是非負(fù)數(shù)”的不等關(guān)系的是().A.a(chǎn)-b0B.a(chǎn)-b0C.a(chǎn)-b≥0D.a(chǎn)-b≤0答案C2.某隧道入口豎立著“限高”的警示牌,是指示司機(jī)要安全通過(guò)隧道,應(yīng)使車(chē)載貨物高度h滿足關(guān)系為().
2024-11-27 23:54
【總結(jié)】第二章一、選擇題1.已知a=(-2,-3)、b=(32,-1),則向量a與b的夾角為()A.π6B.π4C.π3D.π2[答案]D[解析]由a·b=-2×32+(-3)×(-1)=0,∴a⊥b.2.(2021·河
2024-11-27 23:43
【總結(jié)】簡(jiǎn)單線性規(guī)劃雙基達(dá)標(biāo)限時(shí)20分鐘1.設(shè)x,y滿足?????2x+y≥4,x-y≥-1,x-2y≤2,則z=x+y().A.有最小值2,最大值3B.有最小值2,無(wú)最大值C.有最大值3,無(wú)最小值D.無(wú)最小值,也無(wú)最大值解析不等式組?????
2024-11-28 01:55
【總結(jié)】一、選擇題1.設(shè)平面向量a=(3,5),b=(-2,1),則a-2b等于()A.(7,3)B.(7,7)C.(1,7)D.(1,3)【解析】a-2b=(3,5)-2(-2,1)=(3,5)-(-4,2)=(7,3).【答案】A2.若向量a=(x+3,x2-3x-
2024-11-27 23:46
【總結(jié)】一、選擇題1.點(diǎn)C在線段AB上,且AC→=35AB→,則AC→等于()BC→BC→C.-23BC→D.-32BC→【解析】∵AC→=35AB→,∴BC→=-25AB→,∴AC→=-32BC→.【答案】D2.下面四個(gè)說(shuō)法①對(duì)于實(shí)數(shù)m
【總結(jié)】習(xí)題課正弦定理和余弦定理的應(yīng)用雙基達(dá)標(biāo)限時(shí)20分鐘1.在△ABC中,已知cosAcosBsinAsinB,則△ABC是().A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形解析cosAcosBsinAsinB?cos(A+B)0,∴A+B9
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.如圖在單位圓中角α的正弦線、正切線完全正確的是().A.正弦線PM,正切線A′T′B.正弦線MP,正切線A′T′C.正弦線MP,正切線ATD.正弦線PM,正切線AT解析根據(jù)單位圓中的三角函數(shù)線可知C正確.答案C2.如果MP、OM分