【總結(jié)】第2講空間幾何體的表面積與體積【2020年高考會這樣考】考查柱、錐、臺、球的體積和表面積,由原來的簡單公式套用漸漸變?yōu)榕c三視圖及柱、錐與球的接切問題相結(jié)合,難度有所增大.【復(fù)習(xí)指導(dǎo)】本講復(fù)習(xí)時,熟記棱柱、棱錐、圓柱、圓錐的表面積和體積公式,運用這些公式解決一些簡單的問題.基礎(chǔ)梳理1.柱、錐、臺和球的側(cè)面積和體積面
2025-08-22 01:40
【總結(jié)】高考文科數(shù)學(xué)立體幾何題型與方法(文科)一、考點回顧1.平面(1)平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(2)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣,可根據(jù)公理2證明這些點都在這兩個平面的
2025-01-14 15:13
【總結(jié)】1.(2009北京卷)(本小題共14分)如圖,四棱錐的底面是正方形,,點E在棱PB上.(Ⅰ)求證:平面;(Ⅱ)當(dāng)且E為PB的中點時,求AE與平面PDB所成的角的大小.解:如圖,以D為原點建立空間直角坐標(biāo)系,設(shè)則,(Ⅰ)∵,∴,∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,∴平面.(Ⅱ)當(dāng)且E為PB的中點時,,
2025-08-05 10:17
【總結(jié)】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿分12分)(注意:在試題卷上作答無效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43
【總結(jié)】俯視圖正視圖51210側(cè)視圖圖1?廣東省各地市高考數(shù)學(xué)聯(lián)考試題分類匯編第2部分:立體幾何一、選擇題:1.(廣東省珠海一中2022年2月高三第二學(xué)期第一次調(diào)研文科)如圖所示,在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別為棱AA1、BB1的中點,G為棱A1B
2025-01-09 07:43
【總結(jié)】12022年高考真題理科數(shù)學(xué)解析匯編:立體幾何一、選擇題錯誤!未指定書簽。.(2022年高考(新課標(biāo)理))已知三棱錐SABC?的所有頂點都在球O的求面上,ABC?是邊長為1的正三角形,SC為球O的直徑,且2SC?;則此棱錐的體積為()A.26B.36C.23D.22錯
2025-01-11 00:58
【總結(jié)】大家網(wǎng)高考論壇12022年高考數(shù)學(xué)試題分類匯編立體幾何一.選擇題:1.(上海卷13)給定空間中的直線l及平面?,條件“直線l與平面?內(nèi)無數(shù)條直線都垂直”是“直線l與平面?垂直”的(C)條件A.充要B.充分非必要C.必要非充分D.既非充分又非必要2.(全國一11)
2025-01-11 00:54
【總結(jié)】選擇題1.(12年四川卷)如圖,半徑為的半球的底面圓在平面內(nèi),過點作平面的垂線交半球面于點,過圓的直徑作平面成角的平面與半球面相交,所得交線上到平面的距離最大的點為,該交線上的一點滿足,則、兩點間的球面距離為()A.B.C.D.2.(12年廣東卷)某幾何體的三視圖如圖1所示,它的體積為(
2025-01-14 14:09
【總結(jié)】高中數(shù)學(xué)精講精練第七章立體幾何初步【知識圖解】【方法點撥】立體幾何研究的是現(xiàn)實空間,認(rèn)識空間圖形,可以培養(yǎng)學(xué)生的空間想象能力、推理論證能力、運用圖形語言進(jìn)行交流的能力以及幾何直觀能力??臻g的元素是點、線、面、體,對于線線、線面、面面的位置關(guān)系著重研究它們之間的平行與垂直關(guān)系,幾何體著重研究棱柱、棱錐和球。在復(fù)習(xí)時我們要以下幾點:1.注意
2025-08-20 20:20
【總結(jié)】1基礎(chǔ)題題庫三立體幾何201..已知過球面上A、B、C三點的截面和球心的距離等于球半徑的一半,且AB=BC=AC=2,求球的體積。解析:過A、B、C三點截面的小圓的半徑就是正△ABC的外接圓的半徑332,它是Rt△中060所對的邊,其斜邊為34,即球的半徑為34,∴?81256?V;202.正
2025-08-20 20:22
【總結(jié)】(2012江西?。ū拘☆}滿分12分)如圖,在梯形ABCD中,AB∥CD,E,F(xiàn)是線段AB上的兩點,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=△ADE,△CFB分別沿DE,CF折起,使A,B兩點重合與點G,得到多面體CDEFG.(1)求證:平面DEG⊥平面CFG;(2)求多面體CDEFG的體積。2012,山東(19)(本小題滿分12分)如圖,
2025-04-17 13:07
【總結(jié)】立體幾何大題1.如下圖,一個等腰直角三角形的硬紙片ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高沿CD把△ABC折成直二面角.ABC第1題圖ABCD第1題圖(1)如果你手中只有一把能度量長度的直尺,應(yīng)該如何確定A,B的位置,使二面角A-CD-B是直二面角?證明你的結(jié)論.(2)試在平面AB
2025-04-17 13:17
【總結(jié)】《立體幾何》專題練習(xí)題1.如圖正方體中,E、F分別為D1C1和B1C1的中點,P、Q分別為A1C1與EF、AC與BD的交點,(1)求證:D、B、F、E四點共面;(2)若A1C與面DBFE交于點R,求證:P、Q、R三點共線2.已知直線、異面,平面過且平行于,平面過且平行于,求證:∥.FECByZ
2025-04-17 13:06
【總結(jié)】雨竹林高考資訊網(wǎng)福建高考招生資訊網(wǎng)2010年高考數(shù)學(xué)二輪專題復(fù)習(xí)教案――立體幾何一、本章知識結(jié)構(gòu):二、重點知識回顧1、空間幾何體的結(jié)構(gòu)特征(1)棱柱、棱錐、棱臺和多面體棱柱是由滿足下列三個條件的面圍成的幾何體:①有兩個面互相平行;②其余各面都是四邊形;③每相鄰兩個四邊形的公共邊都互相平行;棱柱按底面邊數(shù)可分為:三棱柱、四棱柱、五棱柱等.棱柱性質(zhì):①棱
2025-06-08 00:25
【總結(jié)】立體幾何復(fù)習(xí)專題 一、考情分析 綜觀近年高考對立體幾何的考查,主要體現(xiàn)了三個特點:、填空考查基礎(chǔ)知識,如線面關(guān)系的判斷、體積與面積的計算等,難度中等偏易,分值5~10分左右;,如空間平行與垂直的論...
2025-03-15 04:04