【摘要】立體幾何復(fù)習(xí)備考:研究高考試題征服09高考石油中學(xué)成衛(wèi)維成也數(shù)學(xué),敗也數(shù)學(xué)。數(shù)學(xué)、確實(shí)是不少高三考生心口的痛。如何提高數(shù)學(xué)復(fù)習(xí)的針對(duì)性和實(shí)效性?教你一個(gè)門道,簡(jiǎn)稱“三問法”:第一問自己:“學(xué)懂了沒有?”—主要解決“是什么”的問題,即學(xué)了什么知識(shí);第二問自己:“領(lǐng)悟了沒有?”—主要解決“為什么”的問題,即用了什么方法;第三問自己:“會(huì)用了沒有?”—主要解決“做什么”的問題
2025-01-14 21:48
【摘要】輔導(dǎo)科目:數(shù)學(xué)授課教師:全國(guó)章年級(jí):高二上課時(shí)間:教材版本:人教版總課時(shí):已上課時(shí):課時(shí)學(xué)生簽名:課題名稱教學(xué)目標(biāo)重點(diǎn)、難點(diǎn)、考點(diǎn)教學(xué)步驟及內(nèi)容空間向量與立體幾何一、空間直角坐標(biāo)系的建立及點(diǎn)的坐標(biāo)表示空間直
2025-04-17 07:58
【摘要】2011-2017北京市高考試題立體幾何匯編1、(2011文5)某四棱錐的三視圖如右圖所示,該四棱錐的表面積是(). A.32B.16+16C.48D.16+322、(2011理7)某四面體的三視圖如右圖所示,該四面體四個(gè)面的面積中最大的是()A.8B.D.3、(2012理
2025-04-07 20:43
【摘要】第四課文化的繼承性與文化發(fā)展課標(biāo)要求解析中華民族傳統(tǒng)文化在現(xiàn)實(shí)生活中的作用,闡述繼承傳統(tǒng)文化要“取其精華,去其糟粕”的道理?!粲懻摚喝绾慰创齻鹘y(tǒng)習(xí)俗的價(jià)值?!魪墓偶墨I(xiàn)中摘錄一些至今仍被頻繁引用的傳統(tǒng)道德格言,討論繼承和發(fā)揚(yáng)中華傳統(tǒng)美德在今天的作用?!粼O(shè)計(jì)展板:我國(guó)一些建筑、藝術(shù)、服飾等風(fēng)格和形式的變遷,體現(xiàn)著傳統(tǒng)與現(xiàn)代結(jié)合之美。基本觀點(diǎn)1、
2025-05-11 22:03
【摘要】高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面
2025-06-26 05:02
【摘要】2009高考數(shù)學(xué)解答題專題攻略----立體幾何09高考立體幾何分析與預(yù)測(cè):立體幾何是高中數(shù)學(xué)中的重要內(nèi)容,也是高考的熱點(diǎn)內(nèi)容。該部分新增加了三視圖,對(duì)三視圖的考查應(yīng)引起格外的注意。立體幾何在高考解答題中,常以空間幾何體(柱,錐,臺(tái))為背景,考查幾何元素之間的位置關(guān)系。另外還應(yīng)注意非標(biāo)準(zhǔn)圖形的識(shí)別、三視圖的運(yùn)用、圖形的翻折、求體積時(shí)的割補(bǔ)思想等,以及把運(yùn)動(dòng)的思想引進(jìn)立體幾何。最近幾年綜合分
2025-01-15 10:22
【摘要】12020-2020年各省市立體幾何高考題選編(文數(shù))富源縣第六中學(xué)秦慶輝一、選擇題,正視圖和俯視圖如右圖所示,則相應(yīng)的側(cè)視圖可以為(),網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()(A)6(B)9(C)12(D)18
2024-11-24 20:51
【摘要】第1頁版權(quán)所有不得復(fù)制立體幾何中的數(shù)量問題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角]2,0(?(2)直線與平面所成角]2,0[?(3)二面角],0[?2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB
2025-07-29 15:14
【摘要】專題四立體幾何專題內(nèi)容反映了作者近年來高考輔導(dǎo)的成功經(jīng)驗(yàn)和高考命題研究的最新成果,具有把握高考脈搏準(zhǔn)確、信息及時(shí)全面、材料新穎、方法靈活、講解透徹、點(diǎn)拔到位、注重分析、注重提高的特點(diǎn)。專題以提高能力和提高成績(jī)?yōu)橹笇?dǎo)思想,一方面,立足基礎(chǔ),突出重點(diǎn)主干知識(shí),注重分析,即在分析解題過程中,揭示題目的本質(zhì)結(jié)構(gòu)、解析難點(diǎn)、點(diǎn)撥疑點(diǎn)、舉一反
2025-08-01 17:17
【摘要】一、判定兩線平行的方法1、平行于同一直線的兩條直線互相平行2、垂直于同一平面的兩條直線互相平行3、如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線就和交線平行4、如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行5、在同一平面內(nèi)的兩條直線,可依據(jù)平面幾何的定理證明二、判定線面平行的方法1、據(jù)定義:如果一條直線和一個(gè)平面
2025-04-17 01:18
【摘要】專題:空間角一、基礎(chǔ)梳理(1)異面直線所成的角的范圍:。(2)異面直線垂直:如果兩條異面直線所成的角是直角,則叫兩條異面直線垂直。兩條異面直線垂直,記作。(3)求異面直線所成的角的方法:(1)通過平移,在一條直線上(或空間)找一點(diǎn),過該點(diǎn)作另一(或兩條)直線的平行線;(2)找出與一條直線平行且與另一條相交的直線,那么這兩條相交直線所成的角即為所求。平移技巧
2025-04-17 07:49
【摘要】,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面角A-BACBA1B1C1DED-C為60
2025-06-26 04:57
【摘要】立體幾何中的數(shù)量問題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角(2)直線與平面所成角(3)二面角2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB、PC兩兩垂直,與PA、PB所成角為45°,60°,求與PC所成角。解:構(gòu)造長(zhǎng)方體[例2]正四棱錐S—A
2025-06-07 23:44
【摘要】廣東高考數(shù)學(xué)真題匯編:立體幾何1、(2011?廣東文數(shù))正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線稱為它的對(duì)角線,那么一個(gè)正五棱柱對(duì)角線的條數(shù)共有( ?。?A、20 B、15C、12 D、101解答:解:由題意正五棱柱對(duì)角線一定為上底面的一個(gè)頂點(diǎn)和下底面的一個(gè)頂點(diǎn)的連線,因?yàn)椴煌谌魏蝹?cè)面內(nèi),故從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線有2條.正五棱柱對(duì)角線的條
2025-04-07 21:28
【摘要】.......立幾面測(cè)試001一、選擇題1、以下命題(其中a,b表示直線,a表示平面)①若a∥b,bìa,則a∥a ?、谌鬭∥a,b∥a,則a∥b③若a∥b,b∥a,則a∥a ④若a∥a,bÌ
2025-03-25 06:44