【總結(jié)】......二次函數(shù)最值問題一.選擇題(共8小題)1.如果多項式P=a2+4a+2014,則P的最小值是( )A.2010 B.2011 C.2012 D.20132.已知二次函數(shù)y=x2﹣6x+m的最小值是﹣
2025-06-23 13:56
【總結(jié)】二次函數(shù)在閉區(qū)間上的最值石家莊市42中學(xué)于祝高中數(shù)學(xué)例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求函數(shù)f(x)的最值;10xy–23例1、已知函數(shù)f(x)=x2–2x–3.(1)若x∈[–2,0],求
2024-10-17 04:08
【總結(jié)】二次函數(shù)綜合問題1:已知函數(shù)在區(qū)間內(nèi)單調(diào)遞減,則a的取值范圍是變式1:已知函數(shù)在區(qū)間(,1)上為增函數(shù),那么的取值范圍是_________.變式2:已知函數(shù)在上是單調(diào)函數(shù),求實數(shù)的取值范圍.2:已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是變式1:若函數(shù)的最大值為M,最小值為m,則M+m的值等于__
2025-04-04 04:25
【總結(jié)】城關(guān)中學(xué)二分校九年級上冊數(shù)學(xué)電子教案二次函數(shù)設(shè)計人:宋旺平教學(xué)目標(biāo):了解什么是二次函數(shù)教學(xué)重點:二次函數(shù)的有關(guān)概念教學(xué)難點:二次函數(shù)的有關(guān)概念的應(yīng)用課時安排:1課時教學(xué)步驟:一、自學(xué)指導(dǎo):—P29頁的內(nèi)容(5分鐘)。①、②、③有什么特點?,弄清各項及其系數(shù)。.二、自學(xué)檢測:1.下列函數(shù)中,哪些是二次函數(shù)?(1)y=
2025-04-17 01:33
【總結(jié)】二次函數(shù)題目專練一、選擇題=x2+2x-2的頂點坐標(biāo)是()A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3),則下列結(jié)論正確的是(?。粒產(chǎn)b>0,c>0?。拢產(chǎn)b>0,c<0 C.a(chǎn)b<0,c>0 ?。模產(chǎn)b<0,c<0 第2題圖第3題圖
【總結(jié)】九年級數(shù)學(xué)(下)第二章二次函數(shù)6.何時獲得最大利潤(1)二次函數(shù)的應(yīng)用陽泉市義井中學(xué)高鐵牛?請你幫助分析:銷售單價是多少時,可以獲利最多?何時獲得最大利潤?某商店經(jīng)營T恤衫,已知成批購進時單價是.根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在某一時間內(nèi),單價是,銷售量是500件,而單價每降低1
2024-11-06 18:08
【總結(jié)】二次函數(shù)最大面積例1如圖所示,等邊△ABC中,BC=10cm,點,分別從B,A同時出發(fā),以1cm/s的速度沿線段BA,AC移動,當(dāng)移動時間t為何值時,△的面積最大?并求出最大面積。A
2025-03-24 06:24
【總結(jié)】二次方程根的分布與二次函數(shù)在閉區(qū)間上的最值歸納1、一元二次方程根的分布情況設(shè)方程的不等兩根為且,相應(yīng)的二次函數(shù)為,方程的根即為二次函數(shù)圖象與軸的交點,它們的分布情況見下面各表(每種情況對應(yīng)的均是充要條件)表一:(兩根與0的大小比較即根的正負情況)分布情況兩個負根即兩根都小于0兩個正根即兩根都大于0一正根一負根即一個根小于0,一個大于0大致圖象()
2025-05-16 01:34
【總結(jié)】2015年周末班學(xué)案自信釋放潛能;付出鑄就成功!WLS二次函數(shù)的最值問題【例題精講】題面:當(dāng)-1≤x≤2時,函數(shù)y=2x2-4ax+a2+2a+2有最小值2,求a的所有可能取值.【拓展練習(xí)】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象與軸交于(-1,0)、(3,0)兩點,頂點為.(1)求此二次函數(shù)解析式;
2025-03-24 06:26
【總結(jié)】函數(shù)模型的應(yīng)用實例第二課時函數(shù)最值和函數(shù)擬合問題提出從實際問題出發(fā),構(gòu)建相應(yīng)的函數(shù)關(guān)系,通過分析函數(shù)的有關(guān)性質(zhì)解決實際問題,是函數(shù)應(yīng)用的重點內(nèi)容.對此類應(yīng)用問題,我們應(yīng)如何展開研究?知識探究(一):函數(shù)最值問題問題:某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進價是5元,銷
2025-04-21 19:27
【總結(jié)】鹿邑三高史琳畫出下列函數(shù)的草圖,并根據(jù)圖象解答下列問題:1說出y=f(x)的單調(diào)區(qū)間,以及在各單調(diào)區(qū)間上的單調(diào)性;2指出圖象的最高點或最低點,并說明它能體現(xiàn)函數(shù)的什么特征?(1)(2)32)(???xxf12)(2????xxxfxyooxy2
2024-11-12 01:38
【總結(jié)】課題:一次函數(shù)與二次函數(shù)的交點及交點的判斷目的:掌握一次函數(shù)與二次函數(shù)的交點坐標(biāo)的算法會用判別式判斷一次函數(shù)與二次函數(shù)有無交點初步認識函數(shù)圖像中的集合問題重點:一次函數(shù)與二次函數(shù)的交點坐標(biāo)的計算難點:理解函數(shù)交點坐標(biāo)的意義課時:一課時過程:引入(1)看函數(shù)圖像通過函數(shù)特點,性質(zhì)求解析式(2)通過解析式畫函數(shù)圖像通過觀察發(fā)現(xiàn)在同一坐標(biāo)系
2025-04-04 04:23
【總結(jié)】二次函數(shù)中絕對值問題的求解策略二次函數(shù)是高中函數(shù)知識中一顆璀璨的“明珠”,而它與絕對值知識的綜合,往往能夠演繹出一曲優(yōu)美的“交響樂”,故成為高考“新寵”。二次函數(shù)和絕對值所構(gòu)成的綜合題,由于知識的綜合性、題型的新穎性、解題方法的靈活性、思維方式的抽象性,學(xué)習(xí)解題時往往不得要領(lǐng),現(xiàn)從求解策略出發(fā),對近年來各類考試中的部分相關(guān)考題,進行分類剖析,歸納出一般解題思考方法。一、適時用分類,討
【總結(jié)】(2012南京市,24,8)某玩具由一個圓形區(qū)域和一個扇形區(qū)域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別相切于點A、B,已知∠CO2D=600,E、F是直線O1O2與⊙O1、扇形O2CD的兩個交點,且EF=24厘米,設(shè)⊙O1的半徑為x厘米.(1)用含x的代數(shù)式表示扇形O2CD的半徑;(2)若⊙O1、,當(dāng)⊙O1的半徑為多少時,該玩具的制作成本最小?
2025-04-04 04:24
【總結(jié)】f(x)=ax2+bx+c(x∈R)判別式a0a0△=0△0最值當(dāng)x=時,y最大值=當(dāng)x=時,y
2024-11-11 08:50