【總結(jié)】平面的基本性質(zhì)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機(jī)或測量用的平板儀等等……C·
2025-04-17 00:53
【總結(jié)】精品資源1.在平行六面體OABC---DEFG中(如圖),側(cè)面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設(shè)a是常數(shù)且0a1,P是EB上的點(diǎn)且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當(dāng)a為何值時(shí),有最小值?解(1)所以平行六面體OABC---DEFG為
2025-04-17 07:36
【總結(jié)】立體幾何之外接球問題一講評課1課時(shí)總第課時(shí)月日1、已知如圖所示的三棱錐的四個(gè)頂點(diǎn)均在球的球面上,和所在的平面互相垂直,,,,則球的表面積為(?)A.B.C.D.2、設(shè)三棱柱的側(cè)棱垂直于底面,所有棱的長都為,頂點(diǎn)都在一個(gè)球面上,則該球的表面積為(??)A.B.C.D
2025-06-25 00:21
【總結(jié)】選擇題1.(12年四川卷)如圖,半徑為的半球的底面圓在平面內(nèi),過點(diǎn)作平面的垂線交半球面于點(diǎn),過圓的直徑作平面成角的平面與半球面相交,所得交線上到平面的距離最大的點(diǎn)為,該交線上的一點(diǎn)滿足,則、兩點(diǎn)間的球面距離為()A.B.C.D.2.(12年廣東卷)某幾何體的三視圖如圖1所示,它的體積為(
2025-01-14 14:09
【總結(jié)】試卷第1頁,總25頁????○????外????○????裝????○????訂????○????線????○????學(xué)校:___________姓名:___________班級:___________考號:___________????○????
2025-01-09 15:44
【總結(jié)】高三文科數(shù)學(xué)立體幾何翻折問題,AB=3,DC=1,∠BAD=45°,DE⊥AB(如圖1).現(xiàn)將△ADE沿DE折起,使得AE⊥EB(如圖2),連結(jié)AC,AB,設(shè)M是AB的中點(diǎn).(1)求證:BC⊥平面AEC;(2)判斷直線EM是否平行于平面ACD,并說明理由.
2025-04-04 05:03
【總結(jié)】俯視圖正(主)視圖側(cè)(左)視圖2322萬全高中高三數(shù)學(xué)(文)同步練習(xí)(23)---立體幾何一、選擇題1、右圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),()可得該幾何體的表面積是()A. B. C. D.2、已知α,β是平面,m,() A.若m∥n,m⊥α,則n⊥
2025-06-07 19:13
【總結(jié)】主講教師:立體幾何復(fù)習(xí)例1.正方體A1B1C1D1-ABCD的棱長為a,在AD1和BD上分別截取AP=BQ=a.求證:(1)PQ∥平面CD1;(2)PQ⊥BC.ACDD1A1B1C1BPQ例,四棱錐P-ABCD的底面ABCD是矩形,PA⊥平
2024-11-09 09:19
【總結(jié)】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔2020北京市高三一模數(shù)學(xué)理分類匯編5:立體幾何【2020北京市豐臺區(qū)一模理】5.若正四棱錐的正視圖和側(cè)視圖如右圖所示,則該幾何體的表面積是()A.4B.4410?C.8D.4411?【答案】B【2020北京市房山區(qū)一模理】10.一
2025-08-14 15:16
【總結(jié)】常規(guī)幾何圖形的立體幾何問題1.如圖,在長方體中,點(diǎn)在棱的延長線上,且.BEADC(Ⅰ)求證:∥平面;(Ⅱ)求證:平面平面;(Ⅲ)求四面體的體積.ABCPD,在四棱錐中,平面平面,,是等邊三角形,已知,.(1)求證:平面;(2)求三棱錐的體積.3.如圖,四棱錐
2025-04-17 08:18
【總結(jié)】專業(yè)整理分享文科立體幾何大題復(fù)習(xí) 一.解答題(共12小題)1.如圖1,在正方形ABCD中,點(diǎn),E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,點(diǎn)G,R分別在線段DH,HB上,且.將△AED,△CFD,△BEF分別沿DE,DF,EF折起,使點(diǎn)A,B,C重合于點(diǎn)P,如圖2所示.
2025-04-17 01:27
【總結(jié)】1.直線與平面平行的判定①判定定理:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行???面∥,面,∥aabba???②面面平行的性質(zhì):若兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的任何直線與另一個(gè)平面平行。????∥,,∥aa??2.直線和平面垂直的判定①判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直
2025-01-09 21:42
【總結(jié)】教學(xué)設(shè)計(jì)方案XueDaPPTSLearningCenter立體幾何知識點(diǎn)整理(文科)一.直線和平面的三種位置關(guān)系:1.線面平行符號表示:2.線面相交符號表示:3.線在面內(nèi)符號表示:二.平行關(guān)系:1.線線平行:方法一:用線面平行實(shí)現(xiàn)。方法二:用面面平行實(shí)現(xiàn)。
2025-08-08 12:27
【總結(jié)】歡迎光臨《中學(xué)數(shù)學(xué)信息網(wǎng)》《中學(xué)數(shù)學(xué)信息網(wǎng)》系列資料版權(quán)所有@《中學(xué)數(shù)學(xué)信息網(wǎng)》ABCDEFGHIJ2020屆高三數(shù)學(xué)第一輪復(fù)習(xí)單元測試(8)—《立體幾何》一、選擇題(本大題共12
2025-08-13 11:56
【總結(jié)】高三數(shù)學(xué)專項(xiàng)訓(xùn)練:立體幾何解答題(文科)(一)1.(本題滿分12分)如圖,三棱錐A—BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.(Ⅰ)求證:DM//平面APC;(Ⅱ)求證:平面ABC⊥平面APC;(Ⅲ)若BC=4,AB=20,求三棱錐D—BCM的體積.2.如圖1,在四棱錐中,底面
2025-04-04 05:02