【總結(jié)】專題一淺析中心投影與平行投影中心投影與平行投影是畫空間幾何體的三視圖和直觀圖的基礎(chǔ),弄清楚中心投影與平行投影能使我們更好地掌握三視圖和直觀圖,平行投影下,與投影面平行的平面圖形留下的影子,與這個(gè)平面圖形的形狀和大小完全相同;而中心投影則不同.下表簡(jiǎn)單歸納了中心投影與平行投影,結(jié)合實(shí)例讓我們進(jìn)一步了解平行投影和中心投影.投影定義特征分類中心投影光由一點(diǎn)向外散射形成的投
2025-04-04 05:09
【總結(jié)】必修2第一章空間幾何體知識(shí)點(diǎn)總結(jié)正視圖:光線從幾何體的前面向后面正投影得到的投影圖;反映了物體的高度和長(zhǎng)度側(cè)視圖:光線從幾何體的左面向右面正投影得到的投影圖;反映了物體的高度和寬度俯視圖:光線從幾何體的上面向下面正投影得到的投影圖。反映了物體的長(zhǎng)度和寬度三視圖中反應(yīng)的長(zhǎng)、寬、高的特點(diǎn):“長(zhǎng)對(duì)正”,“高平齊”,“寬相等”斜二測(cè)畫法的基本步驟:①建立適當(dāng)直角坐標(biāo)
2025-06-25 00:24
【總結(jié)】立體幾何中的公理、定理和常用結(jié)論一、定理1.公理1如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在這個(gè)平面內(nèi).若A∈l,B∈l,A∈a,B∈a,則l?a.2.公理2如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們還有其他公共點(diǎn),這些公共點(diǎn)的集合是經(jīng)過這個(gè)公共點(diǎn)的一條直線.P∈a,P∈aTa∩b=l,且P∈l.3.公理3經(jīng)過不在同一條直線上的三點(diǎn),有且只
2025-06-23 16:12
【總結(jié)】高三數(shù)學(xué)復(fù)習(xí)——立體幾何中的平行與垂直的證明一、平面的基本性質(zhì)公理1:公理2:推論1:推論2:推論3:公理3:二、空間中直線與直線的位置關(guān)系平行:相交:異面:三、平行問題1.直線與平面平行的判定與性質(zhì)定義判定定理性質(zhì)性質(zhì)定理圖形條件a∥α結(jié)
2025-04-17 13:02
【總結(jié)】立體幾何常考證明題1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。AHGFEDCB2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:15
【總結(jié)】高中數(shù)學(xué)立體幾何知識(shí)點(diǎn)總結(jié) 數(shù)學(xué)立體幾何知識(shí)點(diǎn) :掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。 能夠用斜二測(cè)法作圖。 ?。浩叫小⑾嘟?、異面的概念; 會(huì)求異面直線所成...
2024-12-05 02:12
【總結(jié)】高中平面解析幾何公式,hero52制作,與大家共勉,08年我們一起取得好成績(jī)。初中幾何全部定理、公式1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條
2025-06-26 21:49
【總結(jié)】上海立體幾何高考試題匯總(01春)若有平面與,且,則下列命題中的假命題為()(A)過點(diǎn)且垂直于的直線平行于.(B)過點(diǎn)且垂直于的平面垂直于.(C)過點(diǎn)且垂直于的直線在內(nèi).(D)過點(diǎn)且垂直于的直線在內(nèi).(01)已知a、b為兩條不同的直線,α、β為兩個(gè)不同的平面,且a⊥α,b⊥β,則下列命題中的假命題是(?
2025-04-04 05:14
【總結(jié)】立體幾何重要定理:1)直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個(gè)平面.2)直線和平面平行性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行.3)平面平行判定定理:如果一個(gè)平面內(nèi)有兩條
2024-12-17 02:37
【總結(jié)】立體幾何知識(shí)點(diǎn)整理(文科)一.直線和平面的三種位置關(guān)系:1.線面平行符號(hào)表示:2.線面相交符號(hào)表示:3.線在面內(nèi)符號(hào)表示:二.平行關(guān)系:1.線線平行:方法一:用線面平行實(shí)現(xiàn)。方法二:用面面平行實(shí)現(xiàn)。方法三:用線面垂直實(shí)現(xiàn)。若,則。方法四:用向量
2025-04-04 05:17
【總結(jié)】2009-2010學(xué)年高三立幾建系設(shè)點(diǎn)專題引入空間向量坐標(biāo)運(yùn)算,使解立體幾何問題避免了傳統(tǒng)方法進(jìn)行繁瑣的空間分析,只需建立空間直角坐標(biāo)系進(jìn)行向量運(yùn)算,而如何建立恰當(dāng)?shù)淖鴺?biāo)系,成為用向量解題的關(guān)鍵步驟之一.所謂“建立適當(dāng)?shù)淖鴺?biāo)系”,一般應(yīng)使盡量多的點(diǎn)在數(shù)軸上或便于計(jì)算。一、建立空間直角坐標(biāo)系的三條途徑途徑一、利用圖形中的對(duì)稱關(guān)系建立坐標(biāo)系:圖形中雖沒有明顯交于一點(diǎn)的三條直線,但
【總結(jié)】向量法解立體幾何1、直線的方向向量和平面的法向量⑴.直線的方向向量:若A、B是直線上的任意兩點(diǎn),則為直線的一個(gè)方向向量;與平行的任意非零向量也是直線的方向向量.⑵.平面的法向量:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果,那么向量叫做平面的法向量.⑶.平面的法向量的求法(待定系數(shù)法):①建立適當(dāng)?shù)淖鴺?biāo)系.②設(shè)平面的法向量為.③求出平面內(nèi)兩
2025-04-04 05:16
【總結(jié)】數(shù)學(xué)立體幾何知識(shí)點(diǎn) 高二數(shù)學(xué)立體幾何知識(shí)點(diǎn)總結(jié) 點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇?。距離都從點(diǎn)出發(fā),角度皆為線線成。 垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。...
2024-12-04 22:22
【總結(jié)】分享智慧泉源智愛學(xué)習(xí)傳揚(yáng)愛心喜樂Wisdom&Love第1頁(共32頁)2022年2月5日星期六立體幾何1.平面平面的基本性質(zhì):掌握三個(gè)公理及推論
2025-01-09 14:36
【總結(jié)】高中數(shù)學(xué)之立體幾何平面的基本性質(zhì)公理1如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在這個(gè)平面內(nèi).公理2如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線.公理3經(jīng)過不在同一直線上的三個(gè)點(diǎn),有且只有一個(gè)平面.根據(jù)上面的公理,可得以下推論.推論1經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面.推論2經(jīng)過兩條相交直線,有
2025-08-08 19:31