【總結(jié)】立體幾何-平行與垂直練習(xí)題1.空間四邊形SABC中,SO平面ABC,O為ABC的垂心,求證:(1)AB平面SOC(2)平面SOC平面SAB2.如圖所示,在正三棱柱ABC-A1B1C1中,E,M分別為BB1,A1C的中點(diǎn),求證:(1)EM平面AA1C1C;(2)平面A1EC平面AA1C1C;3.如圖,矩形ABCD中,AD⊥平面ABE,BE=BC,F為C
2025-04-04 05:14
【總結(jié)】立體幾何復(fù)習(xí)學(xué)案 班級(jí)學(xué)號(hào)姓名 【課前預(yù)習(xí)】 1.已知是兩條不同的直線,是兩個(gè)不同的平面,有下列四個(gè)命題: ①若,且,則;②若,且,則; ③若,且,則;④若,且,則. 則所有正確命題的序號(hào)...
2024-10-09 19:06
【總結(jié)】立體幾何題型歸類總結(jié)一、考點(diǎn)分析基本圖形1.棱柱——有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①★②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-04-04 03:19
【總結(jié)】廣東高考數(shù)學(xué)真題匯編:立體幾何1、(2011?廣東文數(shù))正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線稱為它的對(duì)角線,那么一個(gè)正五棱柱對(duì)角線的條數(shù)共有( ?。?A、20 B、15C、12 D、101解答:解:由題意正五棱柱對(duì)角線一定為上底面的一個(gè)頂點(diǎn)和下底面的一個(gè)頂點(diǎn)的連線,因?yàn)椴煌谌魏蝹?cè)面內(nèi),故從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線有2條.正五棱柱對(duì)角線的條
2025-04-07 21:28
【總結(jié)】立體幾何復(fù)習(xí)學(xué)案班級(jí)學(xué)號(hào)姓名【課前預(yù)習(xí)】1.已知,lm是兩條不同的直線,,??是兩個(gè)不同的平面,有下列四個(gè)命題:①若l??,且???,則l??;②若l??,且//??,則l??;③若l??
2024-11-20 01:07
【總結(jié)】空間向量與立體幾何經(jīng)典題型與答案1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點(diǎn)長為單位長度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在
2025-06-18 13:50
【總結(jié)】立體幾何高考真題大題1.(2016高考新課標(biāo)1卷)如圖,在以A,B,C,D,E,F為頂點(diǎn)的五面體中,面ABEF為正方形,AF=2FD,,且二面角D-AF-E與二面角C-BE-F都是.(Ⅰ)證明:平面ABEF平面EFDC;(Ⅱ)求二面角E-BC-A的余弦值.【答案】(Ⅰ)見解析;(Ⅱ)【解析】試題分析:(Ⅰ)先證明平面,結(jié)合平面,可得平面平面.(Ⅱ
2025-04-17 07:37
【總結(jié)】立體幾何專題:空間角和距離的計(jì)算一線線角1.直三棱柱A1B1C1-ABC,∠BCA=900,點(diǎn)D1,F(xiàn)1分別是A1B1和A1C1的中點(diǎn),若BC=CA=CC1,求BD1與AF1所成角的余弦值。2.在四棱錐P-ABCD中,底面ABCD是直角梯形,∠BAD=900,AD∥BC,AB=BC=a,AD=2a,且PA⊥面ABCD,PD與底面成300角,(1)若AE⊥PD,E為垂足,求證:B
2025-04-04 04:20
【總結(jié)】高中數(shù)學(xué)(人教版)必修二《立體幾何》綜合提升卷 一.選擇題(共13小題,滿分65分,每小題5分)1.(5分)設(shè)三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,∠BCA=90°,BC=CA=2,若該棱柱的所有頂點(diǎn)都在體積為的球面上,則直線B1C與直線AC1所成角的余弦值為( ?。〢. B. C. D.2.(5分)設(shè)l、m、n表示不同的直線,α、β、γ表示不同的平面,給
2025-04-04 05:06
【總結(jié)】江蘇省射陽縣盤灣中學(xué)高中數(shù)學(xué)立體幾何復(fù)習(xí)(第1課時(shí))教案蘇教版必修2復(fù)習(xí)目標(biāo):理解并掌握平面的基本性質(zhì);理解三個(gè)公理,掌握“文字語言”、“符號(hào)語言”、“圖形語言”三種語言之間的轉(zhuǎn)化;能利用公理及推論找出兩個(gè)平面的交線及有關(guān)“三線共點(diǎn)”、“三點(diǎn)共線”、“點(diǎn)線共面”問題的簡單證明。一、基礎(chǔ)訓(xùn)練:1、若三個(gè)平面把空間分成6個(gè)部分,那么這三個(gè)平
2024-11-19 23:14
【總結(jié)】高中數(shù)學(xué)《必修2》知識(shí)點(diǎn)版權(quán)所有王子安第一章空間幾何體一、常見幾何體的定義能說出棱柱、棱錐、棱臺(tái)、圓柱、圓錐、圓臺(tái)、球的定義和性質(zhì)。二、常見幾何體的面積、體積公式1.圓柱:側(cè)面積(其中是底面周長,是底面半徑,是圓柱的母線,也是
2025-04-04 05:10
【總結(jié)】江蘇省射陽縣盤灣中學(xué)高中數(shù)學(xué)立體幾何復(fù)習(xí)(第3課時(shí))教案蘇教版必修2復(fù)習(xí)目標(biāo):理解并掌握直線與平面垂直的判定定理及性質(zhì)定理、平面與平面垂直的判定定理及性質(zhì)定理。能抓住線線垂直、線面垂直、面面垂直之間的轉(zhuǎn)化關(guān)系解決有關(guān)垂直問題;會(huì)求簡單的二面角的平面角問題。注重滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想一、基礎(chǔ)訓(xùn)練:1、若直線a與平面?不垂直,那么在平面
【總結(jié)】空間向量練習(xí)題1.如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點(diǎn),PA⊥底面ABCD,PA=2.(Ⅰ)證明:平面PBE⊥平面PAB;(Ⅱ)求平面PAD和平面PBE所成二面角(銳角)的大小.如圖所示,以A為原點(diǎn),坐標(biāo)分別是A(0,0,0),B(1,0,0),P(0,0,2),(Ⅰ)證明因?yàn)椋?/span>
2025-06-27 22:52
【總結(jié)】(一)教學(xué)要求:了解共線或平行向量的概念,掌握表示方法;理解共線向量定理及其推論;掌握空間直線的向量參數(shù)方程;會(huì)運(yùn)用上述知識(shí)解決立體幾何中有關(guān)的簡單問題.教學(xué)重點(diǎn):空間直線、平面的向量參數(shù)方程及線段中點(diǎn)的向量公式.教學(xué)過程:一、復(fù)習(xí)引入1.回顧平面向量向量知識(shí):平行向量或共線向量?怎樣判定向量與非零向量是否共線?方向相同或者相反的非零向量叫做平行向量.由于任何一組平行向
2025-06-07 23:19
【總結(jié)】新課標(biāo)立體幾何??甲C明題匯總1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點(diǎn)∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-04-04 05:07