【總結(jié)】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(shè)(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-04-17 13:06
【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用
2025-07-24 12:10
【總結(jié)】立體幾何(理科)二輪復(fù)習(xí)建議北京理工大學(xué)附屬中學(xué)(動(dòng)、靜)畫(huà)面感操作(作圖)判斷空間想象能力推理論證能力借助頭腦中的“畫(huà)面感”來(lái)作出判斷,實(shí)現(xiàn)文字語(yǔ)言和圖形語(yǔ)言的轉(zhuǎn)化。8.設(shè)123,,lll為空間中三條互相平行且兩兩間的距離分別為4,5,6的直線(xiàn).
2025-10-02 14:05
【總結(jié)】第二章點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系平面自主探究學(xué)習(xí)能夠從日常生活實(shí)例中抽象出數(shù)學(xué)中所說(shuō)的“平面”;理解平面的無(wú)限延展性;正確地用圖形和符號(hào)表示點(diǎn)、直線(xiàn)、平面以及它們之間的關(guān)系;初步掌握文字語(yǔ)言、圖形語(yǔ)言與符號(hào)語(yǔ)言三種語(yǔ)言之間的轉(zhuǎn)化;理解可以作為推理依據(jù)的三條公理.、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形
2025-06-07 21:09
2025-06-07 21:56
【總結(jié)】專(zhuān)題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個(gè)全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關(guān)鍵在于找出平面內(nèi)的一條直線(xiàn)
2025-07-18 00:17
【總結(jié)】第一篇:文科立體幾何證明 立體幾何證明題常見(jiàn)題型 1、如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD^底面ABCD,PD=DC=1,E是PC的中 點(diǎn),作EF^PB交PB于點(diǎn)F. ...
2025-10-17 17:25
【總結(jié)】立體幾何專(zhuān)題復(fù)習(xí)一、【知識(shí)總結(jié)】基本圖形1.棱柱——有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長(zhǎng)方體底面為正方形正四棱柱側(cè)棱與底面邊長(zhǎng)相等正方體
2025-03-25 06:44
【總結(jié)】精品資源立體幾何復(fù)習(xí)易做易錯(cuò)題選如皋市教育局教研室一、選擇題:1.(石莊中學(xué))設(shè)ABCD是空間四邊形,E,F(xiàn)分別是AB,CD的中點(diǎn),則滿(mǎn)足()A共線(xiàn)B共面C不共面D可作為空間基向量正確答案:B錯(cuò)因:學(xué)生把向量看為直線(xiàn)。2.(石莊中學(xué))在正方體ABCD-ABCD,O是底面ABCD的中心,M、N分別是棱DD、DC的中點(diǎn)
【總結(jié)】2020.12.151、長(zhǎng)方體的體積DABCD1A1B1C1等底等高柱體的體積相等嗎?2、柱體的體積定理:等底等高柱體的體積相等3、錐體的體積定理:等底等高錐體的體積相等4、臺(tái)體的體積柱、錐、臺(tái)體積的關(guān)系5、球的體積課本P54例1(考察柱體體積公式)求此棱柱挖去圓
2024-11-10 02:14
【總結(jié)】立體幾何選填題一、選擇題1.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A.B.C.D.2.設(shè),是兩個(gè)不同的平面,,是兩條不同的直線(xiàn),且,()A.若,則B.若,則C.若,則D.若,則3.如下圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線(xiàn)畫(huà)出的是
2025-08-05 10:01
【總結(jié)】立體幾何二面角,在長(zhǎng)方體1111CDCD?????中,11???,D2????,?、F分別是??、C?的中點(diǎn).證明1、1C、F、?四點(diǎn)共面,并求直線(xiàn)1CD與平面11CF??所成的角的大小.2.如題(19)圖,三棱錐PABC?中,
2024-11-24 15:52
【總結(jié)】立體幾何垂直關(guān)系專(zhuān)題高考中立體幾何解答題中垂直關(guān)系的基本題型是:證明空間線(xiàn)面垂直需注意以下幾點(diǎn):①由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證題思路。②立體幾何論證題的解答中,利用題設(shè)條件的性質(zhì)適當(dāng)添加輔助線(xiàn)(或面或輔助體)是解題的常用方法之一。③明確何時(shí)應(yīng)用判定定理,何時(shí)應(yīng)用性質(zhì)定理,用定理時(shí)要先申明條件再由定理得出相應(yīng)結(jié)論。④三垂線(xiàn)定理及其逆定理在高考題中
2025-03-25 06:43
【總結(jié)】立體幾何證明平行專(zhuān)題訓(xùn)練命題:***1.如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)2、如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過(guò)A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點(diǎn),現(xiàn)將△ADE沿AE折疊,使得D
【總結(jié)】第一篇:高中立體幾何 高中立體幾何的學(xué)習(xí) 高中立體幾何的學(xué)習(xí)主要在于培養(yǎng)空間抽象能力的基礎(chǔ)上,發(fā)展學(xué)生的邏輯思維能力和空間想象能力。立體幾何是中學(xué)數(shù)學(xué)的一個(gè)難點(diǎn),學(xué)生普遍反映“幾何比代數(shù)難學(xué)”。但...
2024-11-15 06:58