【總結(jié)】高中數(shù)學(xué)立體幾何知識(shí)點(diǎn)總結(jié) 數(shù)學(xué)立體幾何知識(shí)點(diǎn) ?。赫莆杖齻€(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。 能夠用斜二測(cè)法作圖。 :平行、相交、異面的概念; 會(huì)求異面直線所成...
2025-11-26 02:12
【總結(jié)】利用空間向量解決立體幾何問題數(shù)學(xué)專題二學(xué)習(xí)提綱二、立體幾何問題的類型及解法1、判斷直線、平面間的位置關(guān)系;(1)直線與直線的位置關(guān)系;(2)直線與平面的位置關(guān)系;(3)平面與平面的位置關(guān)系;2、求解空間中的角度;3、求解空間中的距離。1、直線的方向向量;2、平面的法向量。
2025-11-16 22:52
【總結(jié)】空間向量與立體幾何解答題精選1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點(diǎn)長(zhǎng)為單位長(zhǎng)度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在上取一點(diǎn)
2025-06-23 04:04
【總結(jié)】立體幾何知識(shí)點(diǎn)整理(文科)一.直線和平面的三種位置關(guān)系:1.線面平行符號(hào)表示:2.線面相交符號(hào)表示:3.線在面內(nèi)符號(hào)表示:二.平行關(guān)系:1.線線平行:方法一:用線面平行實(shí)現(xiàn)。方法二:用面面平行實(shí)現(xiàn)。方法三:用線面垂直實(shí)現(xiàn)。若,則。方法四:用向量
2025-04-04 05:17
【總結(jié)】第三章空間向量與立體幾何單元測(cè)試(時(shí)間:90分鐘 滿分:120分)第Ⅰ卷(選擇題,共50分)一、選擇題:本大題共10小題,每小題5分,共50分.1.以下四組向量中,互相平行的組數(shù)為( )①a=(2,2,1),b=(3,-2,-2);②a=(8,4,-6),b=(4,2,-3);③a=(0,-1,1),b=(0,3,-3);④a=(-3,2,0),b=(4,-3,3)
2025-06-23 18:25
【總結(jié)】空間向量與立體幾何單元測(cè)試題一、選擇題1、若,,是空間任意三個(gè)向量,,下列關(guān)系式中,不成立的是()A.B.C.D.2、給出下列命題①已知,則;②A、B、M、N為空間四點(diǎn),若不構(gòu)成空間的一個(gè)基底,則A、B、M、N共面;③已知,則與任何向量不構(gòu)成空間的一個(gè)基底;④已知是空
2025-03-25 06:42
【總結(jié)】高中數(shù)學(xué)之立體幾何平面的基本性質(zhì)公理1如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在這個(gè)平面內(nèi).公理2如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線.公理3經(jīng)過不在同一直線上的三個(gè)點(diǎn),有且只有一個(gè)平面.根據(jù)上面的公理,可得以下推論.推論1經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面.推論2經(jīng)過兩條相交直線,有
2025-08-08 19:31
【總結(jié)】......空間向量知識(shí)點(diǎn)歸納總結(jié)知識(shí)要點(diǎn)。1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量。注:(1)向量一般用有向線段表示同向等長(zhǎng)的有向線段表示同一或相等的向量。(2)空間的兩個(gè)向量可用同一平面內(nèi)的兩條有向線段來表示。
【總結(jié)】空間向量與立體幾何單元檢測(cè)題一、選擇題:1、若,,是空間任意三個(gè)向量,,下列關(guān)系式中,不成立的是()A、B、C、D、2、已知向量=(1,1,0),則與共線的單位向量() A、(1,1,0) B、(0,1,0) C、(,,0)D、(1,1,1)3、若為任意
2025-01-15 05:33
【總結(jié)】高中數(shù)學(xué)選修(2-1)空間向量與立體幾何測(cè)試題一、選擇題1.若把空間平行于同一平面且長(zhǎng)度相等的所有非零向量的始點(diǎn)放置在同一點(diǎn),則這些向量的終點(diǎn)構(gòu)成的圖形是( ?。粒粋€(gè)圓 B.一個(gè)點(diǎn) C.半圓 D.平行四邊形答案:A2.在長(zhǎng)方體中,下列關(guān)于的表達(dá)中錯(cuò)誤的一個(gè)是( ?。粒? B.C. D.答案:B3.若為任意向量,,下列等式不一
2025-06-23 03:41
【總結(jié)】分類突破題型一、利用向量證明平行與垂直例1如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、
2025-08-05 10:54
【總結(jié)】空間向量在立幾中應(yīng)用空間向量在立體幾何中的應(yīng)用空間向量在立幾中應(yīng)用利用向量判斷位置關(guān)系利用向量可證明四點(diǎn)共面、線線平行、線面平行、線線垂直、線面垂直等問題,其方法是通過向量的運(yùn)算來判斷,這是數(shù)形結(jié)合的典型問題空間向量在立幾中應(yīng)用例1、在正方體AC1中,E、F分別是BB1、CD的中點(diǎn),求
2025-07-20 06:40
【總結(jié)】高中課程復(fù)習(xí)專題1高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)
2025-12-08 02:36
【總結(jié)】空間向量與立體幾何典型例題一、選擇題:1.(2022全國(guó)Ⅰ卷理)已知三棱柱111ABCABC?的側(cè)棱與底面邊長(zhǎng)都相等,1A在底面ABC內(nèi)的射影為ABC△的中心,則1AB與底面ABC所成角的正弦值等于(C)A.13B.23C.33D.23:C.由題意知三棱錐1AABC?為正四
2025-01-09 10:12
【總結(jié)】立體幾何中的向量方法1.(2012年高考(重慶理))設(shè)四面體的六條棱的長(zhǎng)分別為1,1,1,1,和,且長(zhǎng)為的棱與長(zhǎng)為的棱異面,則的取值范圍是 ( ?。〢. B. C. D.[解析]以O(shè)為原點(diǎn),分別以O(shè)B、OC、OA所在直線為x、y、z軸,則,A,2.(2012年高考(陜西理))如圖,在空間直角坐標(biāo)系中有直三棱柱,,則直線與直線夾角的余弦值為 ( ?。〢.
2025-04-17 13:06