【總結(jié)】高考數(shù)學(xué)“放縮法”全解析例如:1、添加或舍棄一些正項(xiàng)(或負(fù)項(xiàng)) 例1、已知求證:證明: 若多項(xiàng)式中加上一些正的值,多項(xiàng)式的值變大,多項(xiàng)式中加上一些負(fù)的值,多項(xiàng)式的值變小。由于證明不等式的需要,有時(shí)需要舍去或添加一些項(xiàng),使不等式一邊放大或縮小,利用不等式的傳遞性,達(dá)到證明的目的。本題在放縮時(shí)就舍去了,從而是使和式得到化簡.2、先放縮再求和(或先求和再
2025-04-17 13:10
【總結(jié)】山東金榜苑文化傳媒集團(tuán)步步高大一輪復(fù)習(xí)講義專題四數(shù)列的綜合應(yīng)用主頁知識網(wǎng)絡(luò)主頁要點(diǎn)梳理憶一憶知識要點(diǎn)主頁題型一等差數(shù)列與等比數(shù)列的綜合應(yīng)用【例1】在等比數(shù)列{an}(n∈N*)中,a11,公比q0,設(shè)bn=2log
2025-08-11 17:04
【總結(jié)】不等式的證明(放縮法)1.設(shè),,則的大小關(guān)系是()A.B.C.D.2.已知三角形的三邊長分別為,設(shè),則與的大小關(guān)系是()A.B.C.D.3.設(shè)不等的兩個(gè)正數(shù)滿足,則的取值范
2025-07-24 12:58
【總結(jié)】數(shù)列、極限、數(shù)學(xué)歸納法·等差、等比數(shù)列綜合問題·教案教學(xué)目標(biāo)1.熟練運(yùn)用等差、等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式以及有關(guān)性質(zhì),分析和解決等差、等比數(shù)列的綜合問題.2.突出方程思想的應(yīng)用,引導(dǎo)學(xué)生選擇簡捷合理的運(yùn)算途徑,提高運(yùn)算速度和運(yùn)算能力.教學(xué)重點(diǎn)與難點(diǎn)1.用方程的觀點(diǎn)認(rèn)識等差、等比數(shù)列的基礎(chǔ)知識、從本質(zhì)上掌握公式.2.解決應(yīng)用問題時(shí),分
2025-06-07 19:16
【總結(jié)】1.均值不等式法例1設(shè)求證例2已知函數(shù),若,且在[0,1]上的最小值為,求證:例3求證.例4已知,,求證:≤1.2.利用有用結(jié)論例5求證例6已知函數(shù)求證:對任意且恒成立。例7已知用數(shù)學(xué)歸納法證明;對對都成立,證明(無理數(shù))例8已知不等式。表示不超過的最大整數(shù)。設(shè)正數(shù)數(shù)列滿足:求證再如:設(shè)函數(shù)。(Ⅰ)
2025-08-11 11:16
【總結(jié)】名師大講堂·2021高考總復(fù)習(xí)《數(shù)學(xué)》(理科)等差數(shù)列、等比數(shù)列的綜合應(yīng)用名師大講堂·2021高考總復(fù)習(xí)《數(shù)學(xué)》(理科)1.遞推數(shù)列{an}在復(fù)習(xí)時(shí)注意掌握難度,以“注重通性通法,淡化特殊技巧”為原則,會求an+1=an+f(n)、an+1=pan+
2025-05-14 03:33
【總結(jié)】第六節(jié)數(shù)列的綜合應(yīng)用基礎(chǔ)梳理1.解答數(shù)列應(yīng)用題的基本步驟(1)審題——仔細(xì)閱讀材料,認(rèn)真理解題意;(2)建?!獙⒁阎獥l件翻譯成數(shù)學(xué)(數(shù)列)語言,將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,弄清該數(shù)列的特征、要求是什么;(3)求解——求出該問題的數(shù)學(xué)解;(4)還原——將所求結(jié)果還原到原實(shí)際問題中.2.數(shù)列應(yīng)用題常見模型(1
2024-11-12 18:12
【總結(jié)】第六章不等式第二節(jié)不等式放縮技巧十法證明不等式,其基本方法參閱(下冊):不等式的放縮技巧。證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給
2025-06-24 19:24
【總結(jié)】放縮法證明不等式一、放縮法原理 為了證明不等式,我們可以找一個(gè)或多個(gè)中間變量C作比較,即若能判定同時(shí)成立,那么顯然正確。所謂“放”即把A放大到C,再把C放大到B;反之,由B縮小經(jīng)過C而變到A,則稱為“縮”,統(tǒng)稱為放縮法。放縮是一種技巧性較強(qiáng)的不等變形,必須時(shí)刻注意放縮的跨度,做到“放不能過頭,縮不能不及”。二、常見的放縮法技巧 1、基本不等式、柯西不等式、排序不等式放縮2、糖
2025-03-25 02:44
【總結(jié)】第一篇:數(shù)列不等式結(jié)合的題的放縮方法 數(shù)列不等式結(jié)合的題的放縮方法 2011-4-611:51提問者:makewest|懸賞分:20|瀏覽次數(shù):559次 2011-4-611:53最佳答案 放...
2025-10-20 04:45
【總結(jié)】第十四講:數(shù)列求和及綜合應(yīng)用一、考綱和課標(biāo)要求:1、掌握數(shù)列求和的常見的基本方法2、解決數(shù)列間綜合及數(shù)列與其他知識綜合的相關(guān)問題3、09考綱有2個(gè)C級要求在這部分出現(xiàn)二:本專題需解決的問題:(1)化歸為基本數(shù)列的求和問題(2)數(shù)列間的綜合(基本數(shù)列、關(guān)聯(lián)數(shù)列)(3)數(shù)列與其
2024-11-12 01:26
【總結(jié)】分組求和法典題導(dǎo)入[例1] (2011·山東高考)等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足:bn=an+
2025-06-25 01:40
【總結(jié)】難點(diǎn)數(shù)列綜合應(yīng)用問題縱觀近幾年的高考,在解答題中,有關(guān)數(shù)列的試題出現(xiàn)的頻率較高,不僅可與函數(shù)、方程、不等式、復(fù)數(shù)相聯(lián)系,而且還與三角、立體幾何密切相關(guān);數(shù)列作為特殊的函數(shù),在實(shí)際問題中有著廣泛的應(yīng)用,如增長率,減薄率,銀行信貸,濃度匹配,養(yǎng)老保險(xiǎn),圓鋼堆壘等問題.這就要求同學(xué)們除熟練運(yùn)用有關(guān)概念式外,還要善于觀察題設(shè)的特征,聯(lián)想有關(guān)數(shù)學(xué)知識和方法,迅速確定解題的方
2025-01-09 15:37
【總結(jié)】第一篇:《數(shù)列和式不等式的放縮策略》讀書筆記 數(shù)學(xué)通訊(2008年第18期) 數(shù)列和式不等式的放縮策略 季強(qiáng) (江蘇省常州高級中學(xué)數(shù)學(xué)組,213003) 數(shù)列一直以來也是高考的重點(diǎn),試卷的壓...
2025-10-19 23:22
【總結(jié)】第一篇:用放縮法證明不等式 用放縮法證明不等式 蔣文利飛翔的青蛙 所謂放縮法就是利用不等式的傳遞性,對照證題目標(biāo)進(jìn)行合情合理的放大和縮小的過程,在使用放縮法證題時(shí)要注意放和縮的“度”,否則就不能...
2025-10-19 05:02