【總結(jié)】第一篇:放縮法證明“數(shù)列+不等式”問題的兩條途徑 放縮法證明“數(shù)列+不等式”問題的兩條途徑 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年命題的熱點,解決這類問題常常用到放縮法。用放縮法解...
2024-10-29 04:45
【總結(jié)】數(shù)列不等式證明的幾種方法數(shù)列和不等式都是高中數(shù)學(xué)重要內(nèi)容,這兩個重點知識的聯(lián)袂、交匯融合,更能考查學(xué)生對知識的綜合理解與運用的能力。這類交匯題充分體現(xiàn)了“以能力立意”的高考命題指導(dǎo)思想和“在知識網(wǎng)絡(luò)交匯處”設(shè)計試題的命題原則。下面就介紹數(shù)列不等式證明的幾種方法,供復(fù)習(xí)參考。一、巧妙構(gòu)造,利用數(shù)列的單調(diào)性例1.對任意自然數(shù)n,求證:。證明:構(gòu)造數(shù)列。所以,即為單調(diào)遞增數(shù)列
2025-07-23 16:02
【總結(jié)】第一篇:證明不等式的幾種方法 證明不等式的幾種方法 黃啟泉 04數(shù)學(xué)與應(yīng)用數(shù)學(xué)1班30號 近幾年來,有關(guān)不等式的證明問題在高考、競賽中屢見不鮮,由于不等式的證明綜合性強,對學(xué)生的思維靈活性與創(chuàng)...
2024-11-03 22:04
【總結(jié)】第一篇:證明數(shù)列前n項和不等式的定積分放縮法 證明數(shù)列前n項和不等式的定積分放縮法 摘要:本文深入分析數(shù)列與函數(shù)之間的聯(lián)系,結(jié)合高等數(shù)學(xué)中數(shù)項級數(shù)[4]的觀點研究高考證明數(shù)列前n項和不等式的相關(guān)問...
【總結(jié)】第一篇:用放縮法證明不等式1 用放縮法證明不等式 時間:2009-01-1310:47點擊: 1230次 不等式是高考數(shù)學(xué)中的難點,而用放縮法證明不等式學(xué)生更加難以掌握。不等式是衡量學(xué)生數(shù)學(xué)素...
2024-10-28 03:53
【總結(jié)】高考數(shù)學(xué)備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給數(shù)列通項的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進行恰當?shù)胤趴s;其放縮技巧主要有以下幾種:奇巧積累:(1)(2)(3)
2025-01-14 14:08
【總結(jié)】第一篇:不等式證明的幾種方法 不等式證明的幾種方法 劉丹華 余姚市第五職業(yè)技術(shù)學(xué)校 摘要:不等式的證明可以采用不同的方法,每種方法具有一定的適用性,并有一定的規(guī)律可循。通過對不等式證明方法和例...
2024-10-28 23:03
【總結(jié)】高中數(shù)學(xué)輔導(dǎo)網(wǎng)不等式證明方法大全不等式的證明是數(shù)學(xué)證題中的難點,其原因是證明無固定的程序可循,方法多樣,技巧性強。1、比較法(作差法)在比較兩個實數(shù)和的大小時,可借助的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有:配方、通分、因式分解、和差化積、應(yīng)用已知定理、公式等。例1、已知:,,求證:。證明:,故得。2、分析法(逆推法)
2025-07-22 19:40
【總結(jié)】第一篇:不等式證明之放縮法 不等式證明之放縮法 放縮法的定義 所謂放縮法,即要證明不等式A (1)放縮的方向要一致。 (2)放與縮要適度。 (3)很多時候只對數(shù)列的一部分進行放縮法,保留一...
2024-10-28 23:26
【總結(jié)】不等式的證明復(fù)習(xí)?不等式證明的常用方法:?比較法、綜合法、分析法反證法先假設(shè)要證明的命題不成立,以此為出發(fā)點,結(jié)合已知條件,應(yīng)用公理、定義、定理、性質(zhì)等,進行正確的推理,得到矛盾,說明假設(shè)不正確,從而間接說明原命題成立的方法。1.xy02.1x12.yxy
2025-08-01 17:41
【總結(jié)】第一篇:證明不等式的種種方法[定稿] 證明不等式的種種方法(提綱) 莫秋萍 茂名學(xué)院師范學(xué)院數(shù)學(xué)系 第一章引言(緒論) 第二章文獻綜述 第三章不等式的證明方法 1、初等代數(shù)中不等式的證明...
【總結(jié)】導(dǎo)數(shù)大題中不等式的證明1.使用前面結(jié)論求證(主要),有三種:,。1、設(shè)函數(shù)(為自然對數(shù)的底數(shù)),().(1)證明:;(2)當時,比較與的大小,并說明理由;(3)證明:().2、已知函數(shù).(1)求在上的最大值;(2)若直線為曲線的切線,求實數(shù)的值;(3)當時,設(shè),且,若不等式恒成立,求實數(shù)的最小值.
2025-03-25 00:40
【總結(jié)】求數(shù)列通項公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項公式。解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差的等差數(shù)列,由等差數(shù)列的通項公式,得,所以數(shù)列的通項公式為。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項公式求出,進而求出數(shù)列的通項公式。二、利用例2.若和分別表示數(shù)列和的前項和,對任意正整數(shù),.求數(shù)列的
2025-08-23 06:16
【總結(jié)】第一篇:高一不等式解法及放縮法證明練習(xí) 不等式 1.設(shè)a,b,c,d是任意正數(shù),求證:1 2.已知x,y,z 3.求證:-1)1+ 4.已知a,b,c?R,求證:a+b+c3ab+bc+...
2024-10-28 09:51
【總結(jié)】第一篇:構(gòu)造函數(shù)證明不等式的八種方法[最終版] 構(gòu)造函數(shù)證明不等式的八種方法 一、移項法構(gòu)造函數(shù) 例: 1、已知函數(shù)f(x)=ln(x+1)-x,求證:當x-1時,但有1- 2、已知函數(shù)f...
2024-10-31 14:50