【正文】
利用導數(shù)研究函數(shù)的性態(tài)目 錄標題 1中文摘要 11. 函數(shù)的單調性 1 1 2 22. 函數(shù)的極值 3 3 4 43. 函數(shù)的最大值、最小值問題 5 、最小值求法 6 64. 函數(shù)的凸凹性 7 7 8 8 95. 曲線的漸近線 9 9 9 96. 描繪函數(shù)圖像 10 10 11參考文獻 12致謝 13外文頁 14利用導數(shù)研究函數(shù)的性態(tài) 摘 要 :可導函數(shù)單調性判別法、函數(shù)的極值、函數(shù)的最大(?。┲?、函數(shù)的凹凸性、漸近線、,其中研究的性質有函數(shù)的單調性、極值、最值及函數(shù)的凹凸性與拐點,并由這些性質和中學所學的函數(shù)的定義域、周期性和奇偶性等等來討論函數(shù)的圖像. 關鍵詞 導數(shù) 函數(shù) 單調性 凹凸性 拐點 漸近線Research on the use of derivative function of stateZhuang Wenjie Directed by Prof. Liu Limei Abstract Extensive use of derivatives, in order to solve the function. Through the six Sparts: 1. Monotonicity derivative discriminant function method。 2. Extremal function;3. Function of the maximum, minimum。 4. Function with the inflection point of the convexconcave; point; discuss the image on the use of derivative function of state were discussed. including the nature of the study of monotone functions, extreme value, the most value and function with the inflection point of the convexconcave, and these schools have learned the nature and definition of the function domain, cycle and parity and so on to discuss the function of the image. Key words Derivative Function Monotonicity Bump Inflection point Asymptote 導數(shù)是數(shù)學的重要基礎