【摘要】排列組合綜合問題教學目標通過教學,學生在進一步加深對排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學會分類討論的思想.教學重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學用具投影儀.教學過程設(shè)計(一)引入師:現(xiàn)在我們大家已經(jīng)學習和掌握了一些排列問題和組
2025-04-09 02:37
【摘要】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
【摘要】本文格式為Word版,下載可任意編輯 排列組合常用方法總結(jié) 排列組合常用方法總結(jié) 總結(jié)就是對一個時期的學習、工作或其完成情況進行一次全面系統(tǒng)的回顧和分析的書面材料,它可以使我們更有效率,讓我...
2025-04-05 21:01
【摘要】排列組合復習學案1重復排列“求冪運算”重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復。把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題。例18名同學爭奪3項冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-05-02 01:31
【摘要】12除做到:排列組合分清,加乘原理辯明,避免重復遺漏外,還應注意積累排列組合問題得以快速準確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-04-09 02:36
【摘要】排列組合:題目中規(guī)定相鄰的幾個元素捆綁成一個組,當作一個大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個元素全排列,再把規(guī)定的相離的幾個元素插
2024-08-24 08:51
【摘要】完美WORD格式排列組合二項式定理1,分類計數(shù)原理完成一件事有幾類方法,各類辦法相互獨立每類辦法又有多種不同的辦法(每一種都可以獨立的完成這個事情)分步計數(shù)原理完成一件事,需要分幾個步驟,每一步的完成有多種不同的方法2,排列 ??排列
2025-07-10 22:54
【摘要】排列組合問題的常見解法,分給7個班,每班至少一個,有多少種分配方案?解:因為10個名額沒有差別,把它們排成一排.相鄰名額之間形成9個空隙.在9個空檔中選6個位置插個隔板,可把名額分成7份,對應地分給7個班級,每一種插板方法對應一種分法共有種分法.注:這和投信問題是不同的,投信問題的關(guān)鍵是信不同,郵筒也不同,而這里的問題是郵筒不同,但信是相同的.即班級不同,但名額都是一
【摘要】二十種排列組合問題的解法排列組合問題聯(lián)系實際生動有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當?shù)姆椒▉硖幚恚虒W目標.;能運用解題策略解決簡單的綜合應用題.提高學生解決問題分析問題的能力.復習鞏固(加法原理)完成一件事,有類辦法,在第1類辦法中
【摘要】排列組合排列定義???從n個不同的元素中,取r個不重復的元素,按次序排列,稱為從n個中取r個的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個數(shù)用P(n,r)表示。當r=n時稱為全排列。一般不說可重即無重。可重排列的相應記號為P(n,r),P(n,r)。組合定義從n個不同元素中取r個不重復的元素組成一個子集,而不考慮其元素的順序,稱
2025-07-10 23:09
【摘要】完美WORD格式專題三:排列、組合及二項式定理一、排列、組合與二項式定理【基礎(chǔ)知識】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-07-10 22:56
【摘要】主題課題:兩個原理和排列知識內(nèi)容:1、分類計數(shù)原理和分步計數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計算公式4.排列應用題能力目標:1、通過兩個原理的學習,培養(yǎng)學生的解決實際問題的能力;2、通過排列的學習,可以遷移知識,更好的運用兩個原理,并能解決稍復雜的數(shù)學問題。3、培養(yǎng)學生的分析問題能力、解決問題的能力。數(shù)學思想:轉(zhuǎn)化思想
【摘要】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個數(shù)字.可組成多少個沒有重復數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①沒有重復數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個位數(shù)字只能是0...
2024-10-21 11:00
【摘要】排列組合教材分析四色問題?任意一張地圖,用一種顏色對一個地區(qū)著色,那么一共只需要四種顏色就能保證每兩個相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個村子里每一個女孩都恰好認識k個男孩,并且每一個男孩也恰好認識k個女孩,那么每一個女孩都可以嫁給她認識的一個男孩,并且每一個男孩都可以娶一個他認識的女孩.穩(wěn)定的婚姻問題?但是
2024-09-03 22:11
【摘要】從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.:從n個不同元素中,任取m個元素,并成一組,叫做從n個不同元素中取出m個元素的一個組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-15 11:20