【摘要】復(fù)合函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?為了解決上面
2024-11-18 19:25
【摘要】§多元函數(shù)的偏導(dǎo)數(shù)與全微分(一)主要內(nèi)容?偏導(dǎo)數(shù)的概念及計算方法?高階導(dǎo)數(shù)定義8.3設(shè)函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時,相應(yīng)地函數(shù)有增量),(
2025-05-13 23:20
【摘要】§利用導(dǎo)數(shù)研究函數(shù)2022/11/17一、單調(diào)性則可導(dǎo)在,),(],,[babaCf?).,(),0(0)()(],[baxxfbaf?????減上遞增在證明:)(必要性?,?f?,0)()(:???hxfhxf總有).,(,0)(baxxf????,),(),,(hbahxba
2025-05-21 12:03
【摘要】fx?'()0fxab?()(,)在內(nèi)單調(diào)遞增fx?'()0()(,)fxab?在內(nèi)單調(diào)遞減一般地,函數(shù)y=f(x)在某個區(qū)間(a,b)內(nèi)thaoh’(a)=0單調(diào)遞增h’(t)0單調(diào)遞減h’(t)0觀察高臺跳水運動圖象,
2024-08-23 18:40
【摘要】復(fù)合函數(shù)的導(dǎo)數(shù)練習(xí)題一、選擇題=的導(dǎo)數(shù)是A.B.C.-D.-=sin3(3x+)的導(dǎo)數(shù)為(3x+)cos(3x+)(3x+)cos(3x+)(3x+)D.-9sin2(3x+)cos(3x+)=cos(sinx)的導(dǎo)數(shù)為A.-[sin(si
2025-04-09 00:18
【摘要】舊知回顧:高考中考查函數(shù)的定義域的題目多以選擇題或填空題的形式出現(xiàn),有時也出現(xiàn)在大題中作為其中一問。以考查對數(shù)和根號兩個知識點居多。指函數(shù)式中自變量的取值范圍。(已知函數(shù)的解析式,若未加特殊說明,則定義
2025-05-13 23:19
【摘要】§高階導(dǎo)數(shù)、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)
2025-05-22 12:10
【摘要】一、復(fù)習(xí)目標(biāo)了解導(dǎo)數(shù)概念的某些實際背景(瞬時速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導(dǎo)數(shù),并能熟練應(yīng)用它們求有關(guān)導(dǎo)數(shù).二、重點解析
2024-08-24 05:46
【摘要】二、高階導(dǎo)數(shù)的運算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機(jī)動目錄上頁下頁返回
2025-06-01 21:33
2024-12-01 02:10
【摘要】《簡單復(fù)合函數(shù)的導(dǎo)數(shù)》同步檢測一、基礎(chǔ)過關(guān)1.下列函數(shù)是復(fù)合函數(shù)的是________.(填序號)①y=-x3-1x+1②y=cos(x+π4)③y=1lnx④y=(2x+3)4[來源^&:*@中教網(wǎng)%]2.函數(shù)y=1?3x-1?2的導(dǎo)數(shù)y′=________.[來源:學(xué)科網(wǎng)ZXX
2024-12-27 20:50
【摘要】復(fù)合函數(shù)的導(dǎo)數(shù)復(fù)習(xí)回顧基本初等函數(shù)的求導(dǎo)公式簡記??????????????xxaxxeeaaaxxxxnxxCaxxxxnn1ln1lo.6sincocossi.2'''
2024-08-13 22:48
【摘要】函數(shù)的單調(diào)性與導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)'??e)e)(5(x'x?x1(6)(l
2024-12-07 15:36
【摘要】第六節(jié)高階導(dǎo)數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示,這與實變函
2025-02-04 03:38
【摘要】第84講函數(shù)的連續(xù)性與導(dǎo)數(shù)的概念復(fù)習(xí)目標(biāo)及教學(xué)建議基礎(chǔ)訓(xùn)練知識要點雙基固化能力提升規(guī)律總結(jié)復(fù)習(xí)目標(biāo)掌握函數(shù)在某點處連續(xù),在開區(qū)間、閉區(qū)間上連續(xù)的定義與判定方法,知道函數(shù)在某點處不連續(xù)三種類型.了解導(dǎo)數(shù)的實際背景,理解導(dǎo)數(shù)的定義,掌握導(dǎo)數(shù)的幾何意義.
2024-11-02 11:50