【摘要】第一篇:立體幾何證明大題 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點(diǎn),BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、如...
2024-11-12 13:02
【摘要】第一篇:立體幾何證明與解答 必修2第一章《立體幾何初步》單元教學(xué)分析 1、本章節(jié)在整個(gè)教材體系中的地位和作用 本章教材是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)之一,通過研究空間幾何體的結(jié)構(gòu)特征、三視圖和直觀圖、表面...
2024-11-15 06:00
【摘要】立體幾何常考證明題匯總考點(diǎn):線面垂直,面面垂直的判定2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;(2)平面平面。考點(diǎn):線面平行的判定A1ED1C1B1DCBA3、如圖,在正方體中,是的中點(diǎn),求證:平面??键c(diǎn):線面垂直的判定4、已知中,面,,求證:面.
2025-05-12 06:44
【摘要】立體幾何證明平行專題訓(xùn)練命題:***1.如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)2、如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點(diǎn),現(xiàn)將△ADE沿AE折疊,使得D
【摘要】第一篇:立體幾何的證明 青于藍(lán)教育 《立體幾何》專題復(fù)習(xí)一 點(diǎn)、直線、平面之間的位置關(guān)系 第一部分:考點(diǎn)梳理 (一)空間直線、平面之間的位置關(guān)系 1、平面的基本性質(zhì) 公理1:如果一條直線...
2024-11-12 12:33
【摘要】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識(shí)網(wǎng)絡(luò) 一、經(jīng)典例題剖析 考點(diǎn)一點(diǎn)線面的位置關(guān)系 1、設(shè)l是直線,a,β是兩個(gè)不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
2024-11-16 23:04
【摘要】文科立體幾何證明線面、面面平行,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).①證明MN∥平面PAB;②求四面體N-BCM的體積.2.如圖,四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為線段AD,PC
2025-05-12 03:14
【摘要】第一篇:立體幾何規(guī)范性證明 立體幾何證明規(guī)范性訓(xùn)練(1) 1、如圖,M,N,K分別是正方體ABCD-A1B1C1D1的棱AB,CD,C1D1的中點(diǎn).(1)求證:AN//平面A1MK;(2)求證:M...
2024-10-14 09:02
【摘要】第一篇:立體幾何證明大題答案 立體幾何證明大題答案 1.(本題滿分9分) 證明: ü(1)AE=EDüyTEF//DC?AF=FCt??EF?平面BCDyTEF//平面BCD DCì平面BC...
2024-11-12 12:47
【摘要】第一篇:高中立體幾何證明方法 高中立體幾何 一、平行與垂直關(guān)系的論證 由判定定理和性質(zhì)定理構(gòu)成一套完整的定理體系,在應(yīng)用中:低一級(jí)位置關(guān)系判定高一級(jí)位置關(guān)系;高一級(jí)位置關(guān)系推出低一級(jí)位置關(guān)系,前...
2024-10-28 20:01
【摘要】第一篇:立體幾何常見證明方法 立體幾何方法歸納小結(jié) 一、線線平行的證明方法 1、根據(jù)公理4,證明兩直線都與第三條直線平行。 2、根據(jù)線面平行的性質(zhì)定理,若直線a平行于平面A,過a的平面B與平面...
2024-11-15 05:33
【摘要】立體幾何平行證明題二、平面與平面平行:)//,:(//::1??????????則若用符號(hào)表示為記為平行與平面則稱平面沒有公共點(diǎn)與平面平面定義???,、2、判定方法??????????////////:??????????或其它方法aa②baba,、///
2024-09-15 09:40
【摘要】立體幾何專題1.如圖4,在邊長(zhǎng)為1的等邊三角形中,分別是邊上的點(diǎn),,是的中點(diǎn),與交于點(diǎn),將沿折起,得到如圖5所示的三棱錐,其中.(1)證明://平面;(2)證明:平面;(3)當(dāng)時(shí),求三棱錐的體積.【解析】(1)在等邊三角形中,,在折疊后的三棱錐中也成立,,平面,平面,平面;(2)在等邊三角形中,是的中點(diǎn),所以①,.在
2025-06-20 00:35
【摘要】立體幾何——平行的證明【例1】如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)分析:取PC的中點(diǎn)G,連EG.,F(xiàn)G,則易證AEGF是平行四邊形【例2】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G
2025-05-13 05:42