【摘要】相似三角形復(fù)習(xí)課教學(xué)設(shè)計【教學(xué)目標(biāo)】知識與技能:1.復(fù)習(xí)相似三角形的概念。2.復(fù)習(xí)相似三角形的性質(zhì)。3.復(fù)習(xí)相似三角形的判定。4.復(fù)習(xí)相似三角形的應(yīng)用,用相似知識解決一些數(shù)學(xué)問題。過程與方法:在梳理全等三角形與相似三角形知識的過程中,感受類比思想,劃歸思想;情感態(tài)度與價值觀:總結(jié)圖形相似的有關(guān)特征并應(yīng)用到實(shí)際問題的解決中,培養(yǎng)應(yīng)用數(shù)學(xué)的能力。
2025-06-04 07:33
【摘要】§第一課時學(xué)習(xí)目標(biāo)知識與技能理解并掌握相似三角形的對應(yīng)線段(高、中線、角平分線)之間的關(guān)系,掌握定理的證明方法,并能靈活運(yùn)用相似三角形的判定定理和性質(zhì),提高分析和推理的能力。過程與方法在對性質(zhì)定理的探究中,學(xué)生經(jīng)歷“觀察--猜想--論證--歸納”的過程,培養(yǎng)學(xué)生主動探究、合作交流的習(xí)慣和嚴(yán)謹(jǐn)治學(xué)的態(tài)度,并在其中體會類比的數(shù)學(xué)思想,培養(yǎng)學(xué)生大膽猜想、勇于探索、
2025-06-04 07:24
【摘要】相似三角形的判定學(xué)習(xí)目標(biāo)、重點(diǎn)、難點(diǎn)【學(xué)習(xí)目標(biāo)】1.掌握兩個三角形相似的判定條件(三個角對應(yīng)相等,三條邊的比對應(yīng)相等,則兩個三角形相似)——相似三角形的定義,和三角形相似的預(yù)備定理(平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形與原三角形相似).2.掌握“兩組對應(yīng)邊的比相等且它們的夾角相等的兩個三角形相似”的判定方法;掌握“兩角對應(yīng)相等,兩個三角形相似”
2024-09-15 10:51
【摘要】《相似三角形的應(yīng)用》教案 課題 相似三角形的應(yīng)用 總課時 2 本節(jié)課時 1 課型 新授課 ...
2025-04-03 05:08
【摘要】中考第一輪復(fù)習(xí):相似三角形友情提示:請根據(jù)課本相關(guān)內(nèi)容,快速解決下列問題,5分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應(yīng)________,各邊對應(yīng)成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角形一邊的直線
2025-02-02 11:56
【摘要】精品資源相似三角形題目集錦1.操作如圖,在正方形ABCD中,P是CD上一動點(diǎn)(與C、D不重合).使得三角形的直角頂點(diǎn)與P點(diǎn)重合,并且一條直角邊始終經(jīng)過點(diǎn)B,另一直角邊與正方形的某一邊所在直線交于點(diǎn)E.探究(1)觀察操作猜想哪一個三角形也△.(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時,你得到的三角形與△BPC的周長比是多少?
2024-09-14 03:40
【摘要】官方網(wǎng)站:相似三角形及其性質(zhì)一、課堂講解知識點(diǎn)1、三角對應(yīng)相等,三邊對應(yīng)成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質(zhì),也是三角形相似的判定方法。注意
2025-06-04 07:51
【摘要】......個性化輔導(dǎo)授課案教師:盧天明學(xué)生:時間2016年月日時段相似三角形的判定教學(xué)目
2025-06-04 07:43
【摘要】......【一】知識梳理【1】比例①定義:四個量a,b,c,d中,其中兩個量的比等于另兩個量的比,那么這四個量成比例②形式:a:b=c:d,③性質(zhì):基本性質(zhì):ac=bd1、可以把比例式與等積式互
2025-05-12 06:30
【摘要】問題1:相似三角形的有關(guān)概念(1).三個角對應(yīng)_____、三條邊對應(yīng)_______的兩個三角形叫做相似三角形(2).相似三角形的對應(yīng)角_____,對應(yīng)邊________.(3).相似比等于____的兩個三角形全等.相等成比例相等成比例1一、復(fù)習(xí)提問相似三角形的識別問:除定義之外,相似
2025-01-27 13:48
【摘要】1.如圖,在△ABC中,D是BC上一點(diǎn),E是AD上一點(diǎn),且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點(diǎn)D在BC邊上移動,連接AD,將△ADC沿直線AD翻折,點(diǎn)C的對應(yīng)點(diǎn)為C1.(1)當(dāng)AC1⊥BC時,CD的長是多少?(2)設(shè)C
2025-05-12 06:32
【摘要】相似三角形的判定定理:定理1:兩角對應(yīng)相等,兩三角形相似。定理2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。定理3:三邊對應(yīng)成比例,兩三角形相似?!螦=∠A'∠B=∠B'△ABC∽△A'B'C'??△ABC∽△A'B'C'△ABC∽
2025-01-12 05:43
【摘要】相似三角形說課稿各位評委,各位老師:大家好,我是趙勇連。今天我講的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書北師大版八年級下冊第四章第5節(jié)《相似三角形》。我將從五個方面進(jìn)行我的說課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書北師大版八年級下冊第四章第5節(jié)內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了線段的比,形狀相同的圖形及相似多邊形
2024-09-30 19:21
【摘要】一、下列各題有“病”嗎?如果有“病”,請寫出“病因”,沒有解答的,請你解答,并寫出你認(rèn)為易讓別人犯錯的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應(yīng)增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點(diǎn)E為邊CD上的一點(diǎn),AE的延長線交BC的延長線于點(diǎn)F,請你寫出圖中的
2025-01-27 14:14
【摘要】相似三角形x是6、3、2的第四比例項,則x=_____;若2:(a-3)=(a-3):8,則a=________.:2x-5y=0,則x:y=_____;._______;????yxyyyx:AD∥BE∥CF,則=;=;=
2025-01-13 22:11