【摘要】(1)對(duì)于某類(lèi)事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法.歸納法{完全歸納法不完全歸納法由特殊一般特點(diǎn):a2=a1+da3=a1+2da4=a1+3d……an=a1+(n-1)d如何證明:1+3+5+…+(2n-1)=
2025-01-21 15:24
【摘要】"福建省長(zhǎng)樂(lè)第一中學(xué)2021高中數(shù)學(xué)第二章《(2)》教案新人教A版選修2-2"教學(xué)目標(biāo)知識(shí)與技能:理解數(shù)學(xué)歸納法的概念,掌握數(shù)學(xué)歸納法的證明步驟;過(guò)程與方法:通過(guò)數(shù)學(xué)歸納法的學(xué)習(xí),體會(huì)用不完全歸納法發(fā)現(xiàn)規(guī)律,用數(shù)學(xué)歸納法證明規(guī)律的途徑;情感、態(tài)度與價(jià)值觀:學(xué)會(huì)數(shù)學(xué)歸納法在整除問(wèn)題、幾何問(wèn)題、歸納猜想
2025-02-07 06:41
【摘要】數(shù)學(xué)歸納法數(shù)學(xué)歸納法及其應(yīng)用舉例課題引入①觀察:6=3+3,8=5+3,10=3+7,12=5+7,14=3+11,16=5+11,···78=67+11,···我們能得出什么結(jié)論?任何一個(gè)大于等于6的偶數(shù),都可以表示成兩個(gè)
2024-11-05 20:45
【摘要】數(shù)學(xué)歸納法應(yīng)用舉例例1.用數(shù)學(xué)歸納法證明:2222(1)(21)1236nnnn???????證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=1,等式成立;(2)假設(shè)當(dāng)n=k時(shí),等式成立,即2222(1)(21)1236kkkk???????那么
2025-01-21 01:21
【摘要】"福建省長(zhǎng)樂(lè)第一中學(xué)2020高中數(shù)學(xué)第二章《(1)》教案新人教A版選修2-2"教學(xué)目標(biāo)知識(shí)與技能:了解數(shù)學(xué)歸納法原理,理解數(shù)學(xué)歸納法的概念;過(guò)程與方法:掌握數(shù)學(xué)歸納法的證明步驟,能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題.情感、態(tài)度與價(jià)值觀:通過(guò)學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。教學(xué)重點(diǎn):
2025-01-22 23:25
【摘要】楚水實(shí)驗(yàn)學(xué)校高二數(shù)學(xué)備課組數(shù)學(xué)歸納法(二)復(fù)習(xí)回顧:什么是數(shù)學(xué)歸納法?如果(1)當(dāng)n取第一個(gè)值n0時(shí)結(jié)論正確;(2)假設(shè)當(dāng)n=k(k∈N+,且k≥n0)時(shí)結(jié)論正確,證明當(dāng)n=k+1時(shí)結(jié)論也正確.那么,命題對(duì)于從n0開(kāi)始的所有正整數(shù)n都成立數(shù)學(xué)歸納法公理··
2025-01-21 15:25
【摘要】湖南省邵陽(yáng)市隆回二中選修2-2學(xué)案推理與證明數(shù)學(xué)歸納法(2)【學(xué)習(xí)目標(biāo)】1.了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟;2.能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題,并能?chē)?yán)格按照數(shù)學(xué)歸納法證明問(wèn)題的格式書(shū)寫(xiě);3.數(shù)學(xué)歸納法中遞推思想的理解.【自主學(xué)習(xí)】復(fù)習(xí)1:數(shù)學(xué)歸納
2025-01-22 20:35
【摘要】第一篇:高中數(shù)學(xué)數(shù)學(xué)歸納法教案新人教A版選修4-5 教學(xué)要求:了解數(shù)學(xué)歸納法的原理,并能以遞推思想作指導(dǎo),理解數(shù)學(xué)歸納法的操作步驟,能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題,::: 一、復(fù)習(xí)準(zhǔn)備:...
2024-10-26 10:34
【摘要】數(shù)學(xué)歸納法證明不等式第四講????????????.,,,,|sin||sin|:,,.,,,,???????????????????NnxnxxnNnnNnnnnnNnnnNnnnn11152200???例如等式數(shù)多個(gè)正整數(shù)相關(guān)
2025-01-20 15:12
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第2章作業(yè)新人教B版選修2-2一、選擇題1.用數(shù)學(xué)歸納法證明1+q+q2+?+qn+1=qn+2-1q-1(n∈N*,q≠1),在驗(yàn)證n=1等式成立時(shí),等式左邊的式子是()A.1B.1+qC.1+q+q2
2025-02-05 11:27
【摘要】§數(shù)學(xué)歸納法課時(shí)目標(biāo).2.能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題.握數(shù)學(xué)歸納法的實(shí)質(zhì)及與歸納,猜想的關(guān)系..1.?dāng)?shù)學(xué)歸納法公理對(duì)于某些________________的數(shù)學(xué)命題,可以用數(shù)學(xué)歸納法證明.2.證明步驟對(duì)于某些與正整數(shù)有關(guān)的數(shù)學(xué)命題,如果(1)當(dāng)n________
2025-02-07 09:28
【摘要】PK!宻燾?[Content_Types].xml?(?
2025-02-07 06:36
【摘要】用數(shù)學(xué)歸納法證明不等式課前導(dǎo)引情景導(dǎo)入觀察下列式子:1+23212?,1+,35312122??47413121222???,…,則可以猜想的結(jié)論為:__________考注意到所給出的不等式的左右兩邊分子、分母與項(xiàng)數(shù)n的關(guān)系,則容易得出結(jié)論:1+??223121…+112)1(1
2025-01-23 03:13
【摘要】高中蘇教選修(2-2)數(shù)學(xué)歸納法水平測(cè)試一、選擇題1.用數(shù)學(xué)歸納法證明“221nn??對(duì)于0nn≥的自然數(shù)n都成立”時(shí),第一步證明中的起始值0n應(yīng)?。ǎ〢.2B.3C.5D.6答案:C2.用數(shù)學(xué)歸納法證明不等式1111(1)2321nnnn???????
2025-02-07 03:04
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章4數(shù)學(xué)歸納法課時(shí)作業(yè)北師大版選修2-2一、選擇題1.用數(shù)學(xué)歸納法證明等式1+2+3+?+(n+3)=n+n+2(n∈N+)時(shí),驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()A.1B.1+2C.1+2+3D.1+2+3+4
2025-02-07 01:48