【摘要】一元二次不等式復(fù)習(xí)一元二次方程方程有兩個(gè)不等的根0??044)2(22????abacabxa(1)公式法X=方程有一個(gè)根0??方程沒有根0??求根的方法:(2)配方法,化為頂點(diǎn)式(3)十字相乘法復(fù)習(xí)一元二次方程:ax2+bx+c=0(a≠0)的根例:求0322???xx
2025-01-21 00:48
【摘要】課題:一元二次不等式(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】掌握一元二次不等式的解法;進(jìn)一步理解三個(gè)一元二次不等式,一元二次方程和二次函數(shù)之間的關(guān)系;會解一些簡單的含參數(shù)的不等式.【課前預(yù)習(xí)】1.如何解一元二次不等式02???cbxax與02???
2025-01-23 01:05
【摘要】第4課時(shí)一元二次不等式及其解法的應(yīng)用...上一課時(shí)我們共同學(xué)習(xí)了一元二次不等式的解法,并能解簡單的一元二次不等式,一元二次不等式及其解法是一種重要的數(shù)學(xué)工具,是集合、函數(shù)、不等式等知識的綜合交匯點(diǎn),地位重要,這一講我們將共同探究一元二次不等式及其解法的應(yīng)用.問題1穿針引線法正二次不可分解因
2025-01-21 08:09
【摘要】課題:一元二次不等式(3)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】掌握一元二次不等式的解法;進(jìn)一步理解一元二次不等式,一元二次方程和二次函數(shù)之間的關(guān)系;學(xué)會處理含參數(shù)的一元二次不等式恒成立問題.【課前預(yù)習(xí)】1.解不等式:(1)0624???xx;
【摘要】課題:一元二次不等式的解法(1)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】學(xué)習(xí)目標(biāo):1、通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。2、會解一元二次不等式?!菊n前預(yù)習(xí)】課前預(yù)習(xí)1.一元二次不等式和相應(yīng)的二次函數(shù)是否有內(nèi)在的聯(lián)系?2.
【摘要】一元二次不等式的解法課時(shí)目標(biāo).、一元二次方程之間的相互關(guān)系.1.一元一次不等式一元一次不等式經(jīng)過變形,可以化成axb(a≠0)的形式.(1)若a0,解集為________________;(2)若a0,解集為________________.2.一元二次不等式一
2025-02-07 06:39
【摘要】§一元二次不等式的解法(1)教學(xué)目標(biāo)(一)教學(xué)知識點(diǎn)1.一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系.2.一元二次不等式的解法.(二)能力訓(xùn)練要求1.通過由圖象找解集的方法提高學(xué)生邏輯思維能力,滲透數(shù)形結(jié)合思想.2.提高運(yùn)算(變形)能力.(三)德育滲透目標(biāo)滲透由具體到抽象思想.教學(xué)重點(diǎn)
2025-01-21 23:35
【摘要】第2課時(shí)一元二次不等式解法的應(yīng)用1.若ax2+bx+c≥0的解集是空集,則二次函數(shù)f(x)=ax2+bx+c的圖象開口向,且與x軸交點(diǎn).2.若ax2+bx+c0的解集是實(shí)數(shù)集R,則二次函數(shù)f(x)=ax2+bx+c的圖象開口向,且二次三項(xiàng)式的判別式Δ0.
2025-02-02 12:27
【摘要】含參數(shù)的一元二次不等式的解法含參一元二次不等式常用的分類方法有三種:一、按項(xiàng)的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對二次項(xiàng)系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2解不等式分析因?yàn)?,,所以我們只要討論二次?xiàng)系數(shù)的正負(fù)。解當(dāng)時(shí),解集為;
2024-08-04 02:53
【摘要】【成才之路】2021年春高中數(shù)學(xué)第3章不等式2一元二次不等式第1課時(shí)一元二次不等式的解法同步練習(xí)北師大版必修5一、選擇題1.不等式(x+3)(1-x)≤0的解集為()A.{x|x≥3或x≤-1}B.{x|-1≤x≤3}C.{x|-3≤x≤1}D.{x|x≤-3或
2025-02-07 06:35
【摘要】不等式第三章§2一元二次不等式第三章第1課時(shí)一元二次不等式的解法課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)城市人口的急劇增加使車輛日益增多,需要通過修建立交橋和高架道路形成多層立體的布局,以提高車速和通過能力.城市環(huán)線和高
2025-01-20 03:39
【摘要】一元二次不等式方程:ax2+bx+c=0的解情況函數(shù):y=ax2+bx+c的圖象不等式的解集ax2+bx+c>0ax2+bx+c<0a>0xyox1x2xox0yxoy當(dāng)⊿>0時(shí),方程有兩不等的根x1
2025-01-21 08:48
【摘要】一元二次不等式第1課時(shí)概念:一元二次方程:ax2+bx+c=0二次函數(shù):y=ax2+bx+c一元二次不等式:ax2+bx+c0a≠0x2-6x+80②一元二次不等式:一元二次方程:x2-6x+8=0③y=x2-6x+8④24
2025-01-20 23:32
【摘要】3.2一元二次不等式1.一般地,含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為二次的整式不等式,叫做一元二次不等式.2.設(shè)f(x)=ax2+bx+c(a≠0),則一元二次方程f(x)=0的解集,就是使二次函數(shù)值等于0時(shí)自變量x的取值的集合.3.設(shè)f(x)=ax2+bx+c(a≠0),則一元二次不等式f(x
2025-02-10 02:41
【摘要】第2課時(shí)不等式的性質(zhì)..建筑設(shè)計(jì)規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個(gè)比值越大,住宅的采光條件越好.試問:同時(shí)增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.問題1:在上述情境中假設(shè)原住
2025-02-10 02:37